Database Management

Systems/Managing Database
DCAP402/DCAP204

Editor
Dr. Anil Sharma

OVELY
ROFESSIONAL
NIVERSITY

7% IMOVELY
% [RJROFESSIONAL
== [ENIVERSITY

DATABASE MANAGEMENT SYSTEMS/
MANAGING DATABASE

Edited By
Dr. Anil Sharma

www.manaraa.com

ISBN: 978-93-87034-71-6

Printed by
EXCEL BOOKS PRIVATE LIMITED
Regd. Office: E-77, South Ext. Part-I, Delhi-110049
Corporate Office: 1E/14, Jhandewalan Extension, New Delhi-110055

@ +91-8800697053, +91-011-47520129
@ info@excelbooks.com/ projects@excelbooks.com
internationalalliance@excelbooks.com

T4 www.excelbooks.com

GECoMnORO

Lovely Professional University
Phagwara

www.manharaa.com

Unit1:

Unit 2:

Unit 3:

Unit4:

Unit 5:

Unit 6:

Unit 7:

Unit 8:

Unit9:

Unit10:

Unit11:

Unit12:

Unit13:

Unit 14:

CONTENTS

Database Fundamentals
Harjinder Kaur, Lovely Professional University

Database Relational Model
Pooja Gupta, Lovely Professional University

Structured Query Language
Sartaj Singh, Lovely Professional University

Advanced SQL
Sarabjit Kumar, Lovely Professional University

Integrity Constraints
Pawan Kumar, Lovely Professional University

Relational Language and Database Design
Pawan Kumar, Lovely Professional University

Relational Database Design
Mandeep Kaur, Lovely Professional University

Normalization
Sahil Rampal, Lovely Professional University

Transaction Management
Pooja Gupta, Lovely Professional University

Datalog and Recursion
Mithilesh Kumar Dubey, Lovely Professional University

Recovery System
Balraj Kumar, Lovely Professional University

Query Processing and Optimization
Kamlesh Lakhwani, Lovely Professional University

Parallel Databases
Manmohan Sharma, Lovely Professional University

Application Development and Administration
Manmohan Sharma, Lovely Professional University

12

37

59

72

84

106

127

148

166

179

196

219

232

www.manharaa.com

www.manharaa.com

SYLLABUS

Database Management Systems/Managing Database

Objectives: The course aims at providing the students through insight on database management principles and practices. The
major objectives of the course are to: Knowledge of DBMS and in terms of use and design

° Describe the main features and function of the DBMS;

° Describe the features of relational database and E-R models;

° Experience with SQL queries;

o Experience ER diagrams;

o Discuss the concept of Transaction, Recovery, Concurrency and Security of DBMS

DCAP402 Database Management Systems

Sr. No. Description

1. Database Fundamentals: Database systems, Database Architecture Relational Model, Structure of Relational
databases, fundamental, additional and extended relational algebra operations

2. SQL: Data Definition, datatypes, schema definition, Basic structure of SQL Queries, Creating tables, DML
operations, DDL commands for creating and altering, Set Operations, Aggregate Functions, NULL values

3. Advanced SQL: Subqueries, Nested subqueries, Complex queries, Views, Joined relations, Integrity
constraints, Authorization, DCL Commands, Embedded SQL, Dynamic SQL

4. Relational Languages: Tuple Relational calculus, Domain relational calculus, Query by Example Database

design and ER model: Overview of Design process, Entity relationship model, constraints, ER Diagrams, ER
Design issues, Weak entity sets, extended ER features

5. Relational Database Design: Features, Atomic Domains and first normal form, Functional
dependency theory decomposition using functional dependencies, decomposition using Multivalued
dependencies, database design process Normalization: INF, 2NF, 3NF, BCNF, 4NF, 5NF.

6. Transaction Management: Concept of Transaction, Transaction State, Implementation of atomicity and
durability, concurrent execution, Serializability, Recoverability, Implementation of Isolation, testing for
Serializability.n Concurrency Control: Lock based protocols, Timestamp based protocols, Validation based
protocols, Deadlock handling, Insert and Delete operations, Weak levels of consistency

7. Recovery system: Failure classification, storage structure, recovery and atomicity, log-based recovery,
recovery with concurrent transactions, buffer management, failure with loss of non-volatile storage

8. Query Processing: Overview, measures of query cost, selection operation, sorting, join operation, evaluation
of expressions Query Optimization: Transformation of relational expressions, estimating statistics of
expression results, Choice of evaluation plans

9. Parallel Databases: 1/O parallelism, Interquery parallelism, Intraquery parallelism, Intraoperation
parallelism, Interoperation parallelism

10. Application development and administration: web interfaces to databases, performance tuning

www.manaraa.com

DCAP204 Managing Database

Sr. No. Description

1. Introduction to fundamentals of DBMS: Database applications, Purpose of database systems, Views of data,
Database languages, Relational Databases, Database Design, Transaction Management

2. Relational Databases: Relational Model, Structure of Relational databases, fundamental, additional and
extended relational algebra operations, Null Values, Modification of database

3. SQL: Data Definition, datatypes, schema definition, Basic structure of SQL Queries, Creating tables, DML -
SELECT, INSERT, DELETE and UPDATE operations, DDL commands

4. SQL: Set Operations - UNION, INTERSECT, EXCEPT, Aggregate Functions, NULL values, Nested
subqueries, Complex queries, Views, Joined relations Advanced SQL: Integrity constraints, Authorization:
GRANT, REVOKE

5. Relational Languages: Tuple Relational calculus, Domain relational calculus, Query by Example, Datalog

6. Database design and ER model: Overview of Design process, Entity relationship model, constraints, ER

Diagrams, ER Design issues, Weak entity sets, extended ER features

7. Relational Database Design: Features, Atomic Domains and first normal form, Functional dependency theory
decomposition using functional dependencies, decomposition using Multivalued dependencies, More normal
forms, database design process

8. Transaction Management: Concept of Transaction, Transaction State, Implementation of atomicity and
durability, concurrent execution, Serializability, Recoverability, Implementation of Isolation, testing for
Serializability

9. Concurrency Control: Lock based protocols, Timestamp based protocols, Validation based protocols,

Deadlock handling, Insert and Delete operations, Weak levels of consistency

10. Recovery system: Failure classification, storage structure, recovery and atomicity, log-based recovery,
recovery with concurrent transactions, buffer management, failure with loss of nonvolatile storage

www.manaraa.com

Harjinder Kaur, Lovely Professional University Unit 1: Database Fundamentals

Unit 1: Database Fundamentals

CONTENTS

Objectives

Introduction

1.1 Database Management Systems (DBMS)
1.2 Database System Applications

1.3 Characteristics of the Database Approach
14 Advantages of DBMS

1.5 Disadvantages of DBMS

1.6 Database Architecture

1.7 Summary

1.8 Keywords

1.9 Self Assessment

1.10 Review Questions

1.11 Further Readings

Objectives

After studying this unit, you will be able to:

) Define database management system

) Explain database system applications

° State the characteristics and the database approach

° Discuss the advantages and disadvantages of database
) Discuss the database architecture

Introduction

The information storage and retrieval has become very important in our day-to-day life. The
old era of manual system is no longer used in most of the places. For example, to book your
airline tickets or to deposit your money in the bank the database systems may be used. The
database system makes most of the operations automated. A very good example for this is the
billing system used for the items purchased in a super market. Obviously this is done with the
help of a database application package. Inventory systems used in a drug store or in a
manufacturing industry are some more examples of database. We can add similar kind of
examples to this list.

Apart from these traditional database systems, more sophisticated database systems are used in
the Internet where a large amount of information is stored and retrieved with efficient search
engines. For instance, http:/ /www.google.com is a famous web site that enables users to search
for their favorite information on the net. In a database we can store starting from text data to
very complex data like audio, video, etc.

LOVELY PROFESSIONAL UNIVERSITY

Notes

www.manaraa.com

Database Management Systems/Managing Database

Notes 1.1 Database Management Systems (DBMS)

A database is a collection of related data stored in a standard format, designed to be shared by
multiple users. A database is defined as “A collection of interrelated data items that can be
processed by one or more application programs”.

A database can also be defined as “A collection of persistent data that is used by the application
systems of some given enterprise”. An enterprise can be a single individual (with a small
personal database), or a complete corporation or similar large body (with a large shared database),
or anything in between.

' Example: A Bank, a Hospital, a University, a Manufacturing company.

Data

Data is the raw material from which useful information is derived. The word data is the plural
of Datum. Data is commonly used in both singular and plural forms. It is defined as raw facts or
observations. It takes variety of forms, including numeric data, text and voice and images. Data
is a collection of facts, which is unorganized but can be made organized into useful information.
The term Data and Information come across in our daily life and are often interchanged.

' Example: Weights, prices, costs, number of items sold etc.
Information

Data that have been processed in such a way as to increase the knowledge of the person who uses
the data. The term data and information are closely related. Data are raw material resources that
are processed into finished information products. The information as data that has been processed
in such way that it can increase the knowledge of the person who uses it.

In practice, the database today may contain either data or information.
Data Processing

The process of converting the facts into meaningful information is known as data processing.
Data processing is also known as information processing.

Metadata

Data that describe the properties or characteristics of other data.

Data is only become useful when placed in some context. The primary mechanism for providing
context for data is Metadata. Metadata are data that describe the properties, or characteristics of
other data. Some of these properties include data definition, data structures and rules or
constraints. The Metadata describes the properties of data but do not include that data.

It allows the database designer and users to understand what data Exit, what the data mean, and
what the fine distinctions are between seemingly similar data items. The management of Metadata
is at least as a crucial as meaning the associated data since data without clear meaning can be
confusing, misinterpreted or erroneous.

2 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 1: Database Fundamentals

1.2 Database System Applications

Databases are widely used. Here are some representative applications:

1.
2.

Banking: For customer information, accounts, and loans, and banking transactions.

Airlines: For reservations and schedule information. Airlines were among the first to use
databases in a geographically distributed manner - terminals situated around the world
accessed the central database system through phone lines and other data networks.

Universities: For student information, course registrations, and grades.

Credit card transactions: For purchases on credit cards and generation of monthly
statements.

Telecommunication: For keeping records of calls made, generating monthly bills,
maintaining balances on prepaid calling cards, and storing information about the
communication networks.

Finance: For storing information about holdings, sales, and purchases of financial
instruments such as stocks and bonds.

Sales: For customer, product, and purchase information.

Manufacturing: For management of supply chain and for tracking production of items in
factories, inventories of items in warehouses / stores, and orders for items.

Human resources: For information about employees, salaries, payroll taxes and benefits,
and for generation of paychecks.

1.3 Characteristics of the Database Approach

A shared collection of logically related data along with the description of the data that suits to
the needs of large enterprises.

Figure 1.1: File System Approach

Program-1 /’_\
S .v
data description-1
File -1
Program-2 i Sy
>
data description-2 File - 2
Program-3 ile -
> File -3
data description-3 \/

This unit describes the basic differences between the traditional way of processing, also called as
file processing, and the database method of processing the data. Every operating system provides
users to open, save, and close a file. The users can store appropriate information in these files.
Take a look at the Figure 1.1 which shows the traditional file processing system that stores the
program and data description in a file. The related information of a particular application is
stored in various files named as Filel, File2, etc., and these files are manipulated using Programl,
Program?2, etc. This is the method that was used in early days.

LOVELY PROFESSIONAL UNIVERSITY

Notes

www.manaraa.com

Database Management Systems/Managing Database

Notes It means that without a DBMS, the data will simply be dumped into one or more files. For any
updation, the files need to be opened and manually search for the line or record, update and then
save the file. Now you can understand the difficulties involved in marinating this type of
information storage.

Figure 1.2: Database Approach

Application program -1 — Y
with data semantics Description v

‘/' Manipulation
Control 44—
ontro Database

Application program -2
with data semantics

Application program -3
with data semantics ~N_

With the advent of database systems, the file processing approach is no longer used. Now you
can observe with the Figure 1.2 that the database is in the disk which in turn is controlled by the
DBMS. In this approach the Application Program-1 along with its data semantics, Application
Program-2 along with its data semantics, etc., interact with the database where the actual data
and constraints are stored through the DBMS. The DBMS provides the necessary control and
manipulation software modules for these application programs to access the data stored in the
database.

This way the applications are free from the system dependent code and achieve program-data
independence.

2

Task Find out the various sources of database management system.

Drawbacks of File Processing System
1. Catalog: In DBMS, the database structure is stored in a catalog and it also contains the
storage details with constraints.

The DMBS software must equally work with any number of database applications provided
the catalog contains the structure and other details of that application. In file processing
the data definition is part of the application program.

'i Example: Record declaration in Pascal.
Class or structure declaration in C++.

2. Program-data independence: In file processing, if changes are done in the structure of the
file, then we may require changing the program design that accesses it. In DBMS the access
programs are written independent of any specific files. This is called as program-data
independence.

The DBMS stores the data in such a way that the user need not be aware of these details.
This concept is called as data abstraction and it may also be called as conceptual
representation.

4 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 1: Database Fundamentals

3. Views: A database may have many users and each one may be interested on a particular
view of the application. A view is conceptually a table, but the records of this table are not
stored in the database.

' Example: Consider the Student database in which we can think of two views:

View 1: Students Grade in various courses. To obtain this information the tables Course
and Grade_Report are to be joined and created as a view.

View 2: If we want to know the Prerequisite Courses that a student needs to study, three
tables are to be joined. These tables are nothing but Student, Section and Prerequisite.

4. Sharing and Transaction processing: A DBMS must provide control for various users
trying to access the database.

' Example: Railway Reservation System with multiple counters.

Whenever several users try to access the same application at the same time, we call this
situation as concurrent transaction processing. Generally, the concurrent access is achieved
with a simple Local Area Network (LAN). It is also possible to book railway tickets online
i.e. through Internet.

1.4 Advantages of DBMS

One of the main advantages of using a database management system is that the organization can
exert via the DBA, centralized management and control over the data. The database administrator
is the focus of the centralized control. If any application requiring a change in the structure of a
data record, the DBA makes the necessary modifications, which do not affect other applications
or users of the record in question.

The following are the major advantages of using a Database Management System (DBMS):

1. Reduction of Redundancies: Centralized control of data by the DBA avoids unnecessary
duplication of data and effectively reduces the total amount of data storage required. It
also eliminates the extra processing necessary to trace the required data in a large mass of
data. Another advantage of avoiding duplication is the elimination of the inconsistencies
that tend to be present in redundant data files.

2. Data Independence and Efficient Access: Database application programs are independent
of the details of auto representation and storage. In addition a DBMS provides efficient
storage and retrieval mechanisms, including support for very large files, index structures
and query optimization.

3. Data Integrity: Centralized control can also ensure that adequate checks are incorporated
in the DBMS to provide data integrity, which means that the data contained in the database
is both accurate and consistent. Therefore, data values being entered for storage could be
checked to ensure that they fall within a specified range and are of the correct format. For
example, the value for the age of an employee may be in the range of 16 and 75. Also it
should be ensured that if there is a reference to certain object, that object must exist. In the
case of an automatic teller machine, for example a user is not allowed to transfer funds
from a nonexistent savings account to a checking account.

4. Data Security: Confidential data must not be accessed by unauthorized persons. Different
levels of security could be implemented for various types of data and operations.

LOVELY PROFESSIONAL UNIVERSITY

Notes

www.manaraa.com

Database Management Systems/Managing Database

Notes 5. Reduced Application Development Time: Since the DBMS provides several important
functions required by applications, such as concurrency control and crash recovery, high
level query facilities, etc., only application-specific code needs to be written.

6. Conflict Resolution: Since the database is under the control of the DBA, he should resolve
the conflicting requirements of various users and applications.

The DBA chooses the best file structure and access method to get optimal performance for
the response-critical applications, while permitting less critical applications to continue
to use the database, though with a relatively slower response.

7. Data Administration: By providing common base for a large collection of data that is
shared by several users, a DBMS facilitates maintenance and data administration tasks. A
good DBA can effectively ensure the fine-tuning, the data representation, periodic backups
etc.

8. Concurrent Access and Crash Recovery: A DBMS supports the notion of a transaction and
executes the actions of transactions in an interleaved fashion to obtain good performance,
but schedules them in such a way as to ensure that conflicting operations are not permitted
to proceed concurrently. Further, the DBMS maintains a continuous log of the changes to
the data, and if there is a system crash, it can restore the database to a transaction- consistent
state. That is, the actions of incomplete transactions are undone. Thus, if each complete
transaction, executing alone, maintains the consistent of criteria, then the database state
after recovery from a crash is consistent.

2

Task Discuss, what are the advantages of oracle instead of access.

1.5 Disadvantages of DBMS

The disadvantage of the DBMS system is overhead cost. The processing overhead introduced by
the DBMS to implement security, integrity, and sharing of the data causes a degradation of the
response and throughput times. An additional cost is that of migration from a traditionally
separate application environment to an integrated one.

Even though centralization reduces duplication, the lack of duplication requires that the database
be adequately backup so that in the case of failure the data can be recovered.

Backup and recovery operations are complex in a DBMS environment, and this is an increment
in a concurrent multi-user database system. A database system requires a certain amount of
controlled redundancies and duplication to enable access to related data items.

Centralization also means that the data is accessible from a single source, namely the database.
This increases the potential severity of security breaches and disrupting of the operation of the
organization because of down times and failures.

1.6 Database Architecture

The functional components of a database system can be broadly divided into query processor
components and storage manager components. The query processor includes:

1. DML Compiler: It translates DML statements in a query language into low-level instructions
that the query evaluation engine understands.

6 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 1: Database Fundamentals

Embedded DML Pre-compiler: It converts DML statements embedded in an application
program to normal procedure calls in the host language. The pre-compiler must interact
with the DML compiler to generate the appropriate code.

DDL Interpreter: It interprets DDL Stateline its and records them in a set of tables containing
metadata.

Transaction Manager: Ensures that the database remains in a consistent (correct) state
despite system failures, and that concurrent transaction executions proceed without
conflicting.

File Manager: Manages the allocation of space on disk storage and the data structures used
to represent information stored on disk.

Buffer Manager: Is responsible for fetching data from disk storage into main memory and
deciding what data to cache in memory.

Also some data structures are required as part of the physical system implementation:

1.
2.

Data Files: The data files store the database by itself.

Data Dictionary: It stores metadata about the structure of the database, as it is used
heavily.

Indices: It provides fast access to data items that hold particular values.

Statistical Data: It stores statistical information about the data in the database. This
information used by the query processor to select efficient ways to execute a query.

Figure 1.3: Structure of DBMS

|

|
|
|
|
|
|
|
|
|
|
|
|
|

Application programmes

APPLICATION
PROGRAMS
Pre compiler
DBA staff Casual users
J/ Parametric
DDL PRIVILEGED Run-time data DML users
STATEMENTS| | COMMANDS base processor c .

ompiler
S (VO -
|

DML
Query |
i statements - |
System A | compiler \l/ Compiled |
DDL E catalog/ 4\)\ DML (cannef:l) |
compiler T Data 53 . Transactions | |
! dictionary / . Compiler !
| / Execution |
| C |
| / . |
| Execution .7 Run-time data Execution |
| 7 base processor [
_________ ’_____L_____________________________.l
Stored [_ _ _ _ _ _ _ D Concurrency control/Backup/
data manager Recovery sub systems

Stored database

LOVELY PROFESSIONAL UNIVERSITY

Notes

www.manaraa.com

Database Management Systems/Managing Database

Notes

Case Study Requirements Analysis

T I The owner of B&N has thought about what he wants and offers a concise summary:

“I would like my customers to be able to browse my catalog of books and to place orders
over the Internet. Currently, I take orders over the phone. I have mostly corporate
customers who call me and give me the ISBN number of a book and a quantity. I then
prepare a shipment that contains the books they have ordered. If I don’t have enough
copies in stock, I order additional copies and delay the shipment until the new copies
arrive; I want to ship a customer’s entire order together. My catalog includes all the books
that I sell. For each book, the catalog contains its ISBN number, title, author, purchase
price, sales price, and the year the book was published. Most of my customers are regulars,
and I have records with their name, address, and credit card number. New customers have
to call me first and establish an account before they can use my Web site.

On my new Web site, customers should first identify themselves by their unique customer
identification number. Then they should be able to browse my catalog and to place orders
online.”

DBDudes’s consultants are a little surprised by how quickly the requirements phase was
completed it usually takes them weeks of discussions (and many lunches and dinners) to
get this done but return to their offices to analyze this information.

1.7 Summary

° A database is a collection of persistent data that is used by the application system of some
enterprise. The enterprise may be a Bank, a Hospital, an Educational Institution, a Library,
etc.

° The word persistence means once the data of the database is accepted by the DBMS, it can
then be removed from the database only by some explicit request.

° It can not be deleted or modified because of some side effect just like the programming
language variables.

° There are several advantages of storing the data in database rather than storing it in
operating system files. An example, university database, to illustrate this concept was
discussed.

° In the DBMS environment we speak of many people. For example, the main people involved
are DBA, Database Designers, and various types of users.

° Though database approach has few disadvantages under some specific circumstances, the
use of database is indispensable. The major implications of database approach are:

<

3 Potential for enforcing standards

3
<

Reduced application development time

3
<

Flexibility

3
<

Economically viable

3
<

Data integrity and security

8 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 1: Database Fundamentals

° Database need not be used always. There are occasions where you manage your data with
out a database.

1.8 Keywords

Data Abstraction: A database management system is a collection of interrelated files and a set
of programs that allow users to access and modify these files. A major purpose of a database
system is to provide users with an abstract view of the data. This is called data abstraction.

Data processing: The process of converting the facts into meaningful information is known as
data processing. Data processing is also known as information processing.

Data: Data is the raw material from which useful information is derived.

Database: A shared collection of logically related data along with the description of the data that
suits to the needs of large enterprises.

Metadata: Data that describe the properties or characteristics of other data.

1.9 Self Assessment

Choose the appropriate answer:

1. DBMS stands for:

(a) Database Managerial System

(b) Database Management System

(c) Database Management Source

(d) Development Management System
2. Data processing is also known as

(@) Data programming

(b) Dataaccess

(c) Information processing

(d) Database sourcing

3. DDL stands for

(@) Data Development Language
(b) Data Document Language
(c) Document Definition Language
(d) Data Definition Language
Fill in the blanks:
4. provides fast access to data items that hold particular values.
5 Data is commonly used in both singular and.cc.ccoeveennnne forms.
6. The term data andcccceevvevveirinenns are closely related.
7 The primary mechanism for providing context for data isccoeoeviviriiininnnes

LOVELY PROFESSIONAL UNIVERSITY

Notes

www.manaraa.com

Database Management Systems/Managing Database

Notes 8. A, is conceptually a table, but the records of this table are not stored in
the database.

9. In DBMS the access programs are written independent of any specificcccccevievirinnnen

10. In file processing the data definition is part of thecccccevvvrinninnnn. program.

1.10 Review Questions

Define database. Explain the concepts in database environment.

List and explain various Database System Applications.

What are the differences between File processing systems and DBMS?
Write the advantages of DBMS.

1.
2
3
4
5. Write short notes on Disadvantages of Database Management System.
6 What is Data independence? Explain the types of Data Independence.
7 What are the database languages? Explain the various languages.

8 What are the responsibilities of a DBA? List and explain them.

9 What is the role of Data user? Explain the types of users.

10. Explain the architecture of DBMS.

11. Explain the components of DBMS.

12. Write history of Database Systems.

Answers: Self Assessment

1. (b) 2. (c)

3. (d) 4. Indices

5. plural 6. information

7. Metadata 8. view

9. files 10. application

1.11 Further Readings

N

Books C.J. Date, Introduction to Database Systems, Pearson Education.
Elmasri Navrate, Fundamentals of Database Systems, Pearson Education.
Martin Gruber, Understanding SQL, BPB Publication, New Delhi
Peter Rob & Carlos Coronel, Database Systems Design, Implementation and
Management, 7th Edition.
Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,
Tata McGraw Hill.
Silberschatz, Korth, Database System Concepts, 5th Edition, McGraw Hill.

10 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 1: Database Fundamentals

Sllberschatz-Korth-Sudarshan, Database System Concepts, 4th Edition, Tata Notes
McGraw Hill

Vai Occardi, Relational Database: Theory & Practice, BPB Publication, New Delhi

Online links www.en.wikipedia.org

<
o>t

www.webopedia.com

www.web-source.net

)VELY PROFESSIONAL UNIVERSITY 11

www.manharaa.com

Database Management Systems/Managing Database Pooja Gupta, Lovely Professional University

Notes Unit 2: Database Relational Model

CONTENTS

Objectives

Introduction

21 Relational Model
211 Relational Model Concepts
21.2 Alternatives to the Relational Model
213 Implementation
214 Application to Databases
215 SQL and the Relational Model
21.6 Set-theoretic Formulation

2.2 Additional and Extended Relational Algebra Operations
221 Relational Algebra Expression
222 Set Operation of Relational Algebra
223 Joins

23 Summary

24 Keywords

2.5 Self Assessment

2.6 Review Questions

2.7 Further Readings

Objectives

After studying this unit, you will be able to:

° Describe relational model
) Explain additional and extended relational algebra operations
Introduction

A relational database consists of a collection of tables that store particular sets of data. The
invention of this database system has standardized the way that data is stored and processed.
The concept of a relational database derives from the principles of relational algebra, realized as
a whole by the father of relational databases, E. F. Codd. Most of the database systems in use
today are based on the relational system.

2.1 Relational Model

The relational model for database management is a database model based on first-order predicate
logic, first formulated and proposed in 1969 by Edgar Codd.

12 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

Figure 2.1: Relational Model

Relation variable
(Table name)

'/ ‘/// - \ erﬁding
R Al A, | &)

/,J

l.‘
k) L Relation
\\A\\

‘ !
-\

Tupple (Row) {unordered}

Attribute (Column) {unordered?}

Value

Its core idea is to describe a database as a collection of predicates over a finite set of predicate
variables, describing constraints on the possible values and combinations of values. The content
of the database at any given time is a finite model (logic) of the database, i.e. a set of relations,
one per predicate variable, such that all predicates are satisfied. A request for information from
the database (a database query) is also a predicate.

2.1.1 Relational Model Concepts

The purpose of the relational model is to provide a declarative method for specifying data and
queries: we directly state what information the database contains and what information we
want from it, and let the database management system software take care of describing data
structures for storing the data and retrieval procedures for getting queries answered.

IBM implemented Codd’s ideas with the DB2 database management system; it introduced the
SQL data definition and query language. Other relational database management systems
followed, most of them using SQL as well. A table in an SQL database schema corresponds to a
predicate variable; the contents of a table to a relation; key constraints, other constraints, and
SQL queries correspond to predicates. However, it must be noted that SQL databases, including
DB2, deviate from the relational model in many details; Codd fiercely argued against deviations
that compromise the original principles.

2.1.2 Alternatives to the Relational Model

Other models are the hierarchical model and network model. Some systems using these older
architectures are still in use today in data centers with high data volume needs or where existing
systems are so complex and abstract it would be cost prohibitive to migrate to systems employing
the relational model; also of note are newer object-oriented databases, even though many of
them are DBMS-construction kits, rather than proper DBMSs. A recent development is the Object-
Relation type-Object model, which is based on the assumption that any fact can be expressed in
the form of one or more binary relationships. The model is used in Object Role Modeling
(ORM), RDF/Notation 3 (N3) and in Gellish English.

The relational model was the first formal database model. After it was defined, informal models
were made to describe hierarchical databases (the hierarchical model) and network databases
(the network model). Hierarchical and network databases existed before relational databases,

LOVELY PROFESSIONAL UNIVERSITY

Notes

13

www.manaraa.com

Database Management Systems/Managing Database

14

Notes

but were only described as models after the relational model was defined, in order to establish
a basis for comparison.

2.1.3 Implementation

There have been several attempts to produce a true implementation of the relational database
model as originally defined by Codd and explained by Date, Darwen and others, but none have
been popular successes so far. Rel is one of the more recent attempts to do this.

History

The relational model was invented by E.F. (Ted) Codd as a general model of data, and subsequently
maintained and developed by Chris Date and Hugh Darwen among others. In The Third Manifesto
(first published in 1995) Date and Darwen show how the relational model can accommodate
certain desired object-oriented features.

Controversies

Codd himself, some years after publication of his 1970 model, proposed a three-valued logic
(True, False, Missing or NULL) version of it in order to deal with missing information, and in his
The Relational Model for Database Management Version 2 (1990) he went a step further with a
four-valued logic (True, False, Missing but Applicable, Missing but Inapplicable) version. But
these have never been implemented, presumably because of attending complexity. SQL’s NULL
construct was intended to be part of a three-valued logic system, but fell short of that due to
logical errors in the standard and in its implementations.

The Model

The fundamental assumption of the relational model is that all data is represented as mathematical
n-ary relations, an n-ary relation being a subset of the Cartesian product of n domains. In the
mathematical model, reasoning about such data is done in two-valued predicate logic, meaning
there are two possible evaluations for each proposition: either true or false (and in particular no
third value such as unknown, or not applicable, either of which are often associated with the
concept of NULL). Some think two-valued logic is an important part of the relational model,
where others think a system that uses a form of three-valued logic can still be considered
relational.

Data are operated upon by means of a relational calculus or relational algebra, these being
equivalent in expressive power.

The relational model of data permits the database designer to create a consistent, logical
representation of information. Consistency is achieved by including declared constraints in the
database design, which is usually referred to as the logical schema.

The theory includes a process of database normalization whereby a design with certain desirable
properties can be selected from a set of logically equivalent alternatives. The access plans and
other implementation and operation details are handled by the DBMS engine, and are not
reflected in the logical model. This contrasts with common practice for SQL DBMSs in which
performance tuning often requires changes to the logical model.

The basic relational building block is the domain or data type, usually abbreviated nowadays to
type. A tuple is an unordered set of attribute values. An attribute is an ordered pair of attribute
name and type name. An attribute value is a specific valid value for the type of the attribute. This
can be either a scalar value or a more complex type.

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

A relation consists of a heading and a body. A heading is a set of attributes. A body (of an n-ary
relation) is a set of n-tuples. The heading of the relation is also the heading of each of its tuples.

A relation is defined as a set of n-tuples. In both mathematics and the relational database model,
a set is an unordered collection of items, although some DBMSs impose an order to their data. In
mathematics, a tuple has an order, and allows for duplication. E.F. Codd originally defined
tuples using this mathematical definition. Later, it was one of E.F. Codd’s great insights that
using attribute names instead of an ordering would be so much more convenient (in general) in
a computer language based on relations. This insight is still being used today. Though the
concept has changed, the name “tuple” has not. An immediate and important consequence of
this distinguishing feature is that in the relational model the Cartesian product becomes
commutative.

A table is an accepted visual representation of a relation; a tuple is similar to the concept of row,
but note that in the database language SQL the columns and the rows of a table are ordered.

A relvar is a named variable of some specific relation type, to which at all times some relation
of that type is assigned, though the relation may contain zero tuples.

The basic principle of the relational model is the Information Principle: all information is
represented by data values in relations. In accordance with this Principle, a relational database
is a set of relvars and the result of every query is presented as a relation.

The consistency of a relational database is enforced, not by rules built into the applications that
use it, but rather by constraints, declared as part of the logical schema and enforced by the DBMS
for all applications. In general, constraints are expressed using relational comparison operators,
of which just one, “is subset of”, is theoretically sufficient. In practice, several useful shorthands
are expected to be available, of which the most important are candidate key (really, superkey)
and foreign key constraints.

Interpretation

To fully appreciate the relational model of data, it is essential to understand the intended
interpretation of a relation.

The body of a relation is sometimes called its extension. This is because it is to be interpreted as
a representation of the extension of some predicate, this being the set of true propositions that
can be formed by replacing each free variable in that predicate by a name (a term that designates
something).

There is a one-to-one correspondence between the free variables of the predicate and the attribute
names of the relation heading. Each tuple of the relation body provides attribute values to
instantiate the predicate by substituting each of its free variables. The result is a proposition that
is deemed, on account of the appearance of the tuple in the relation body, to be true. Contrariwise,
every tuple whose heading conforms to that of the relation but which does not appear in the
body is deemed to be false. This assumption is known as the closed world assumption.

For a formal exposition of these ideas, see the section Set Theory Formulation.

2

Task Write total number of rules given by E.F. Codd.

LOVELY PROFESSIONAL UNIVERSITY

Notes

15

www.manaraa.com

Database Management Systems/Managing Database

Notes 2.1.4 Application to Databases

A type as used in a typical relational database might be the set of integers, the set of character
strings, the set of dates, or the two boolean values true and false, and so on. The corresponding
type names for these types might be the strings “int”, “char”, “date”, “boolean”, etc. It is important
to understand, though, that relational theory does not dictate what types are to be supported;
indeed, nowadays provisions are expected to be available for user-defined types in addition to

the built-in ones provided by the system.

Attribute is the term used in the theory for what is commonly referred to as a column. Similarly,
table is commonly used in place of the theoretical term relation (though in SQL the term is by no
means synonymous with relation). A table data structure is specified as a list of column definitions,
each of which specifies a unique column name and the type of the values that are permitted for
that column. An attribute value is the entry in a specific column and row, such as “John Doe”
or “35”.

A tuple is basically the same thing as a row, except in an SQL DBMS, where the column values in
a row are ordered. (Tuples are not ordered; instead, each attribute value is identified solely by
the attribute name and never by its ordinal position within the tuple.) An attribute name might
be “name” or “age”.

A relation is a table structure definition (a set of column definitions) along with the data appearing
in that structure. The structure definition is the heading and the data appearing in it is the body,
a set of rows. A database relvar (relation variable) is commonly known as a base table.

The heading of its assigned value at any time is as specified in the table declaration and its body
is that most recently assigned to it by invoking some update operator (typically, Insert, Update,
or Delete). The heading and body of the table resulting from evaluation of some query are
determined by the definitions of the operators used in the expression of that query.

i)

Notes In SQL the heading is not always a set of column definitions as described above,
because it is possible for a column to have no name and also for two or more columns to
have the same name. Also, the body is not always a set of rows because in SQL it is possible
for the same row to appear more than once in the same body.

2.1.5 SQL and the Relational Model

SQL, initially pushed as the standard language for relational databases, deviates from the relational
model in several places. The current ISO SQL standard doesn’t mention the relational model or

use relational terms or concepts. However, it is possible to create a database conforming to the

relational model using SQL if one does not use certain SQL features.

The following deviations from the relational model have been noted in SQL. Note that few
database servers implement the entire SQL standard and in particular do not allow some of
these deviations. Whereas NULL is nearly ubiquitous, for example, allowing duplicate column
names within a table or anonymous columns is uncommon.

Duplicate Rows

The same row can appear more than once in an SQL table. The same tuple cannot appear more
than once in a relation.

16 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

Anonymous Columns

A column in an SQL table can be unnamed and thus unable to be referenced in expressions. The
relational model requires every attribute to be named and referenceable.

Duplicate Column Names

Two or more columns of the same SQL table can have the same name and therefore cannot be
referenced, on account of the obvious ambiguity. The relational model requires every attribute
to be referenceable.

Column Order Significance

The order of columns in an SQL table is defined and significant, one consequence being that
SQL’s implementations of Cartesian product and union are both non-commutative. The relational
model requires there to be no significance to any ordering of the attributes of a relation.

Views without CHECK OPTION

Updates to a view defined without CHECK OPTION can be accepted but the resulting update to
the database does not necessarily have the expressed effect on its target. For example, an invocation
of INSERT can be accepted but the inserted rows might not all appear in the view, or an invocation
of UPDATE can result in rows disappearing from the view. The relational model requires
updates to a view to have the same effect as if the view were a base relvar.

Columnless Tables Unrecognized

SQL requires every table to have at least one column, but there are two relations of degree zero
(of cardinality one and zero) and they are needed to represent extensions of predicates that
contain no free variables.

NULL

This special mark can appear instead of a value wherever a value can appear in SQL, in particular
in place of a column value in some row. The deviation from the relational model arises from the
fact that the implementation of this ad hoc concept in SQL involves the use of three-valued logic,
under which the comparison of NULL with itself does not yield true but instead yields the third
truth value, unknown; similarly the comparison NULL with something other than itself does
not yield false but instead yields unknown. It is because of this behaviour in comparisons that
NULL is described as a mark rather than a value. The relational model depends on the law of
excluded middle under which anything that is not true is false and anything that is not false is
true; it also requires every tuple in a relation body to have a value for every attribute of that
relation. This particular deviation is disputed by some if only because E.F. Codd himself
eventually advocated the use of special marks and a 4-valued logic, but this was based on his
observation that there are two distinct reasons why one might want to use a special mark in
place of a value, which led opponents of the use of such logics to discover more distinct reasons
and at least as many as 19 have been noted, which would require a 21-valued logic. SQL itself
uses NULL for several purposes other than to represent “value unknown”.

' Example: The sum of the empty set is NULL, meaning zero, the average of the empty set
is NULL, meaning undefined, and NULL appearing in the result of a LEFT JOIN can mean “no
value because there is no matching row in the right-hand operand”.

LOVELY PROFESSIONAL UNIVERSITY

Notes

17

www.manaraa.com

Database Management Systems/Managing Database

Notes Concepts

”ou o ”ou

SQL uses concepts “table”, “column”, “row” instead of “relvar”, “attribute”, “tuple”. These are
not merely differences in terminology.

'i Example: A “table” may contain duplicate rows, whereas the same tuple cannot appear
more than once in a relation.

Database

An idealized, very simple example of a description of some relvars and their attributes:

1 Customer (Customer ID, Tax ID, Name, Address, City, State, Zip, Phone)

2 Order (Order No, Customer ID, Invoice No, Date Placed, Date Promised, Terms, Status)
3 Order Line (Order No, Order Line No, Product Code, Qty)

4. Invoice (Invoice No, Customer ID, Order No, Date, Status)

5 Invoice Line (Invoice No, Line No, Product Code, Qty Shipped)

6 Product (Product Code, Product Description)

In this design we have six relvars: Customer, Order, Order Line, Invoice, Invoice Line and
Product. The bold, underlined attributes are candidate keys. The non-bold, underlined attributes
are foreign keys.

Usually one candidate key is arbitrarily chosen to be called the primary key and used in preference
over the other candidate keys, which are then called alternate keys.

A candidate key is a unique identifier enforcing that no tuple will be duplicated; this would
make the relation into something else, namely a bag, by violating the basic definition of a set.
Both foreign keys and superkeys (which includes candidate keys) can be composite, that is, can
be composed of several attributes. Below is a tabular depiction of a relation of our example
Customer relvar; a relation can be thought of as a value that can be attributed to a relvar.

Customer Relation
Customer ID Tax ID Name Address [More fields....]
1234567890 555-5512222 Munmun 323 Broadway
2223344556 555-5523232 554 Vegeta 1200 Main Street
3334445563 555-5533323 Ekta 871 1st Street
4232342432 555-5325523 E.F. Codd 123 It Way

If we attempted to insert a new customer with the ID 1234567890, this would violate the design
of the relvar since Customer ID is a primary key and we already have a customer 1234567890.
The DBMS must reject a transaction such as this that would render the database inconsistent by
a violation of an integrity constraint.

Foreign keys are integrity constraints enforcing that the value of the attribute set is drawn from
a candidate key in another relation. For example in the Order relation the attribute Customer ID
is a foreign key. A join is the operation that draws on information from several relations at once.
By joining relvars from the example above we could query the database for all of the Customers,
Orders, and Invoices. If we only wanted the tuples for a specific customer, we would specify this
using a restriction condition.

18 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

If we wanted to retrieve all of the Orders for Customer 1234567890, we could query the database
to return every row in the Order table with Customer ID 1234567890 and join the Order table to
the Order Line table based on Order No.

There is a flaw in our database design above. The Invoice relvar contains an Order No attribute.
So, each tuple in the Invoice relvar will have one Order No, which implies that there is precisely
one Order for each Invoice. But in reality an invoice can be created against many orders, or
indeed for no particular order. Additionally the Order relvar contains an Invoice No attribute,
implying that each Order has a corresponding Invoice. But again this is not always true in the
real world. An order is sometimes paid through several invoices, and sometimes paid without
an invoice. In other words there can be many Invoices per Order and many Orders per Invoice.
This is a many-to-many relationship between Order and Invoice (also called a non-specific
relationship). To represent this relationship in the database a new relvar should be introduced
whose role is to specify the correspondence between Orders and Invoices:

OrderInvoice (Order No, Invoice No)
Now, the Order relvar has a one-to-many relationship to the OrderInvoice table, as does the
Invoice relvar. If we want to retrieve every Invoice for a particular Order, we can query for all

orders where Order No in the Order relation equals the Order No in OrderInvoice, and where
Invoice No in OrderInvoice equals the Invoice No in Invoice.

2

Task Advantages of NULL constraints in DBMS.

2.1.6 Set-theoretic Formulation

Basic notions in the relational model are relation names and attribute names. We will represent
these as strings such as “Person” and “name” and we will usually use the variablesr, s, t ...and
a, b, ¢ to range over them. Another basic notion is the set of atomic values that contains values
such as numbers and strings.

Our first definition concerns the notion of tuple, which formalizes the notion of row or record in
a table:

Tuple: A tuple is a partial function from attribute names to atomic values.
Header: A header is a finite set of attribute names.

Projection: The projection of a tuple t on a finite set of attributes A is
t[A] = {(a,v) (a,v)eta GA}

The next definition defines relation which formalizes the contents of a table as it is defined in the
relational model.

Relation: A relation is a tuple (H,B) with H, the header, and B, the body, a set of tuples that all
have the domain H.

Such a relation closely corresponds to what is usually called the extension of a predicate in first-
order logic except that here we identify the places in the predicate with attribute names. Usually
in the relational model a database schema is said to consist of a set of relation names, the headers
that are associated with these names and the constraints that should hold for every instance of
the database schema.

LOVELY PROFESSIONAL UNIVERSITY

Notes

19

www.manaraa.com

Database Management Systems/Managing Database

20

Notes

Relation Universe: A relation universe U over a header H is a non-empty set of relations with
header H.

Relation Schema: A relation schema (H, C) consists of a header H and a predicate C(R) that is
defined for all relations R with header H. A relation satisfies a relation schema (H, C) if it has
header H and satisfies C.

Key Constraints and Functional Dependencies

One of the simplest and most important types of relation constraints is the key constraint. It tells
us that in every instance of a certain relational schema the tuples can be identified by their
values for certain attributes.

1. Superkey: A superkey is written as a finite set of attribute names.

A superkey K holds in a relation (H, B) if:

K cHand

there exist no two distinct tuples t,t, €B such that t [K] = t,[K].
A superkey holds in a relation universe U if it holds in all relations in U.

Theorem: A superkey K holds in a relation universe U over H if and only if K c Hand

K — H holds in U.

2. Candidate Key: A superkey K holds as a candidate key for a relation universe U if it holds
as a superkey for U and there is no proper subset of K that also holds as a superkey for U.

3. Functional Dependency: A functional dependency (FD for short) is written as X — Y for
X, Y finite sets of attribute names.

A functional dependency X — Y holds in a relation (H,B) if:

X,Y c Hand
v tuples t,t, €B, t,[X]=t,[X]=t,[Y]=1t,[Y]

A functional dependency X — Y holds in a relation universe U if it holds in all relations
in U.

4. Trivial Functional Dependency: A functional dependency is trivial under a header H if it
holds in all relation universes over H.

Theorem: An FD X — Y is trivial under a header H if and only if Yc X cH.

5. Closure: Armstrong’s axioms: The closure of a set of FDs S under a header H, written as
S*, is the smallest superset of S such that:

(@ YcXcH=X->YeS (reflexivity)
(b) X—>YeS AY—>ZeS' =X ZeS (transitivity) and
© X->YeS'AYcH=(XuZ)—>(YuZ)eS" (augmentation)

Theorem: Armstrong’s axioms are sound and complete; given a header Hand a set S of FDs
that only contain subsets of H, X — Y e$*if and only if X — Y holds in all relation
universes over H in which all FDs in S hold.

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

6. Completion: The completion of a finite set of attributes X under a finite set of FDs S, Notes

written as X", is the smallest superset of X such that: Y 5ZeSAYc X = ZcX.

The completion of an attribute set can be used to compute if a certain dependency is in the
closure of a set of FDs.

Theorem: Given a set S of FDs X — Y eS* if and only if Y ¢ X*

7. Irreducible Cover: An irreducible cover of a set S of FDs is a set T of FDs such that:
(@ sS*=T*
(b) there exists Uc TnosuchthatS*=U*

(¢ X —>YeT= Yisasingleton set and

d X>YeTAaZcX=Z->YeS'
Algorithm to Derive Candidate Keys from Functional Dependencies

INPUT: A set S of FDs that contain only subsets of a header H

OUTPUT: The set C of superkeys that hold as candidate keys in all relation universes over H in
which all FDs in S hold begin

C:= ¢; // found candidate keys

Q:={H}; // superkeys that contain candidate keys
while Q <> ¢ do

let K be some element from Q;

Q:=Q-{K};

minimal := true;

for each X->Y in S do

K :=K-Y)uX;// derive new superkey

if K € K then

minimal := false;

Q=Qu{K}

end if

end for

if minimal and there is not a subset of K in C then remove all supersets of K from C;
C:=Cu{K};

end if

end while

end

)VELY PROFESSIONAL UNIVERSITY 21

www.manharaa.com

Database Management Systems/Managing Database

Notes 2.2 Additional and Extended Relational Algebra Operations

This language is used to manipulate the data in the data model. This languages uses a set of
operators that are applied on two relations (input) and produces a new relation (output).

Using the different operators-defined by the relational algebra, queries are built and applied on
the relations.

2.2.1 Relational Algebra Expression

Consists of operations when applied results into a new relation representing the different
requests.

Unary Operations
Operations which operates on only one relation.
Binary Operations

Operations which operate on two relations.

To understand the concepts of relation algebra and relational calculus, the following database
“COMPANY” will be used throughout the unit.

COMPANY database consist of five tables with attribute set as shown.
EMPLOYEE (Ename, Bid, Bdate, Address, Sex, Salary, DNo, Phonenumber, age)
DEPARTMENT (DName, DNo. Manager-id)

DEPT _LOCATION (DNo. Dlocation)

PROJECT (PName, PNumber. PLocation, DNo, Bid)

DEPENDENT (eid, Dep-Name. Sex, relationship)

The underlined attributes represent the primary key for the respective tables.

A compute view of “COMPANY” Database:

Employee
Ename Eid Bdate Address Sex | ($) Salary | Dno Phone Age
number (years)
John 12345261 |10-8-1965 New Jersey M 25000 7 773213218 41
Jack 12345262 |12-5-1955 Chicago M 55000 7 773421317 51
preen |12345263 [20-11-1972 |New York M 20000 7 773421317 34
Brown |12345264 |28-7-1968 Chicago M 40000 8 773210192 28
Bill 12345265 |25-4-1955 Detroit F 35000 8 773271842 51
Jill 12345266 |04-4-1965 New York F 42000 8 773291828 41
Donald |12345267 |02 8-1968 Detroit M 20000] 9 773423145 28
John 1234526 [10- 8- 1965 New Jersey M 25000 8 773213218 41
John 12375261 |10-8-1965 New Jersey M 250001 9 773213218 41
22 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

Department
Dname D.No Manager-id D.no DLocation
Administration 7 12345261 New York
Research 12345265 Detroit
Head quarters 9 12345267 Chicago
Project
Eid Pno Pname Plocation Dno
12345261 21 Computerization New York 7
12345265 31 Product A Detroit 8
12345267 41 New benefits Chicago 9
12345263 51 Soft drinks New Jersey 7
12345264 61 Reorganization Chicago 8
12345262 71 Product B New Jersey 7
Dependent
Eid Dep-Name Sex Relationship
12354261 Nivedita F Mother
12354262 Alan M Brother
12354263 Lizzzi F Sister
12354267 Roven F Daughter
12354265 Peter M Father
12354266 Kumar M Brother
12345267 Sunny M son

The different operations of relational algebra are:

Select (o)

The symbol for the select operation is ¢ . This operation is used to select particular rows from

the two relations, which satisfy the given condition.

The syntax for select operations (table name) <condition>

Example:

1. o (DEPENDENT)

Sex = F

This can be read as “select from table DEPENDENT where Sex = F”. The following table
will be displayed.

LOVELY PROFESSIONAL UNIVERSITY

Notes

23

www.manaraa.com

Database Management Systems/Managing Database

Notes Projection 1
Eid Dep-Name Sex Relationship
12354261 Nivedita F Mother
12354263 Lizzi F Sister
12354267 Raven F Doughtier
2. 6 (DNo =7 AND Address ="New Jersey’) OR (DNo =8 AND Address =Detroit’) EMPLOYEE
This condition selects the rows from employee which satisfy the conditions.
DNo =7 and address = “New Jersey” OR the condition
DNo = 8 and address ‘Detroit’.
If either of the conditions are satisfied then that row is selected.
The boolean operators used here convey the following meaning.
A, AND B, = TRUE if A, & B, are true i.e., the row must satisfy both conditions (A, & B,) in
order to get selected.
(A, v B)) & A ORB, = TRUE if either A| OR B, is true.
(A,AB)) & A AND B, = False if either of A, & B, are false.
(A, v B)) & A ORB, = False if both of A, and B, are false.
The resulting relation is,
Projection 2
Age |Ename |Eid Bdata Address Sex [($) Salary [Dno |Phone No.
41 (John 12345261 10-8-1965 |New Jersey M |25000 7 773213218
51 |(Bill 12345265 12-5-1955 |Detroit F [35000 8 773271142
Some examples of the select operator:
O anageria - 13y DEPARTMENT
o (Salary > 40000 AND age < 40) OR (Salary < 20000 AND age > 20) EMPLOYEE
O (Dep-Name = ‘Raver) OR (zelationship = ‘Brother) DEPENDENT. Different comparison operators can be
used with select operator.
(@) < — Lessthan
(b) > — Greater than
() = — Equalto
(d) # — Not equal to
() < — Less than or equal to
(f) > — Greater than or equal to.
We can even use boolean operator “not” to negate a condition.
3. Display all the information of projects except those which are located in Chicago.
O Not Plocation — “Chicagor L ROJECT
24 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

Projection 3
Pno Pname Plocation Dno Eid
21 Computerization New York 7 12345261
31 Product A Detroit 8 12345265
51 Soft drinks New Jersey 7 12345263
71 Product B New Jersey 7 12345262

Project (n)

This operator is used to display the list of attributes/columns defined in the relation R.
The syntax for “Project” operator is

T tablename)’R’

(attributes)(

T table name)’

(columns)(
' Example: To display project No, DNo from relation PROJECT,

we can write:

n PROJECT)

PNo, Dmo(

Now only these columns are selected and displayed while other columns are eliminated from
the relation.

Projection 4

PNo DNo
21
31
41
51
61
71

O 0 N O ©

sex, salary (EMPLOYEE)

This query will display the columns sex and salary from employee. However, it must be noted
that the duplicate values are not repeated in the new relation. Only unique topples are listed.
This elimination of duplicate values is called as duplicate elimination and hence reduces
redundancy. The following relations will be displayed.

Projection 5

9]
x

e Salary
25000
55000
20000
40000
35000

42000

I I G-

LOVELY PROFESSIONAL UNIVERSITY

Notes

25

www.manaraa.com

Database Management Systems/Managing Database

Notes /T

Notes The select operator is commutative in nature i.e.,

Y cand A* G cand.B (R) = cscand.B (GTcanA (R))

Whereas the project operator is not commutative in nature.

T A (Relation)) = 7, (Relation) if and only if attributes list

attribute list* attributelist.B

B is a subset of attribute list A.

The number of columns returned by the project operator is always equal to or less than the
number of columns in the original relation.

To manipulate the data stored in a table we can combine the two operators discussed so far.

' Example: If we want to display the emp-id, emp-name, Birthdate, salary of all the
employees whose age is greater 30, we can write the expression as,

n G e 3 (EMPLOYEE))

eid, fname, Bdata, Salary, age (

This will return the following relation:

Projection 6

Eid Ename Bdate ($) Salary Age (years)
12345261 John 10-8-1965 25000 41
12345262 Jack 12-5-1955 55000 51
12345263 Green 20-11-1972 20000 34
12345265 Bill 25-4-1955 35000 51
12345266 Jill 04-4-1965 42000 41

Other examples are

OR DEPENDENT

TcDep-Name, Sex, Gre]atiunship = 'Mother' relaionship = 'son’

oo, pName, DNO (Ot ocation = metror PROJECT)

nEname, Eid, DNo, age, address (G (Salary= 40000 AND Sex = 'M") EMPLOYEE)

Selection and projection operators are unary operators, they can be applied to only single
relation.

2.2.2 Set Operation of Relational Algebra

The different operators of relational algebra are as follows:

Union (uU)

When applied on two relations, it returns all the rows which are either present in first relation

or second relation or in both the relations. It does not return the rows which has the same tuple
values - repeating rows. All the rows returned by this operator are unique. One of the constraints

26 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

of union operator is that both the relations must be union-compatible, i.e., both the relations Notes
must have the same number of columns and also these columns must have the same domain
(type of data being stored in each column).

If A and B are two relations and are union compatible then union of these two relations is
expressed as:

A UB — A Breturns uniquely all the tuples of A and B.

' Example: 1If we apply union operator on EMPLOYEE relation and projection
2 relation then we will get the original employee relation with-only unique tuples. To understand
this, consider a simple student] and student2 relation which represent juniors and seniors.

Student (S,)

Roll No Class Name
2101 VIII Ravi
2102 VII Kumar
2103 VI Sheena

Student (S,)

Roll No Class Name
3101 IX Sodir
3102 X Dhani
3103 XI Rahul
S.S,
Roll No Class Name
2101 VIII Ravi
2102 VII Kumar
2103 VI Sheena
3101 IX Sodir
3102 X Dhani
3103 XI Rahul

Intersection ()

When applied on two relations, A and B, it (A ~ B) returns all the rows which are common to
both the relations. Most importantly, this operator can be applied to only those relations that
are union compatible.

' Example: If we apply intersection operator (n) to S, and S, (above relations) then the
result will be an empty relation as nothing is common between the two.

S, NS, = ~ empty relation.

LOVELY PROFESSIONAL UNIVERSITY 27

www.manaraa.com

Database Management Systems/Managing Database

28

Notes

If we apply intersection operator (n) on employee relation and projection 2 the resulting relation

will be similar to projection 2 relation as it has only two tuples in common.

Set-difference (Minus ‘~)

This operator is also called “Minus” operator. If A and B are two relations and are union
compatible then (A - B) will return all the rows which are in A bit not in B. Consider, this

operator is applied to employee and projection 2 relations, then the resulting relation is,

EMPLOYEE Projection 2

Ename Eid Bdate Address | Sex [($) Salary | Dno | Phone No. Age
(years)

Jack 12345262 |12-5-1955 Chcago (M |55000 7 773313218 |51

John 12345261 |10-8-1965 New M |25000 8 773213218 |41
Jersey

Green |12345263 |20-11-1972 [New York (M 20000 7 773421317 |34

Brown |12345264 |28-7-1968 Chicago (M [40000 8 773210192 |28

Jill 12345266 | 04-4-1965 New York [F 42000 8 773291828 41

Donald |12345267 [02-8-1968 Detroit M (20000 9 773423175 |28

John 12375261 |10-8-1965 New M (25000 9 773213218 |41
Jersey

Cross Product (*)

This operator returns all the tuples of relation A plus all the tuples of relation B. Cross product
is denoted as, A * B - returns the Cartesian product of two relation. The resulting relation will be
much bigger in size than the two relations.

A B
Column 1 Column2 Column A Column 1 Column B

1 a ai 1 b1

2 b az 2 b2

3 c as 3 bs

A*B
Column 1 Column 2 Column A Column 1 Column B

1 a ai 1 b1
1 a ar 2 b2
1 a as 3 bs
2 b az 1 b1
2 b az 2 b2
2 b az 3 bs
3 c as 1 B1
3 c as 2 b2
3 c as 3 bs

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

Renaming (p)
This operator is used to rename the relation or attributes or both. The syntax for this operator is
p (A (old name — pnew name), B)

B is the old relation which being renamed as ‘A’. The list which contains the new names for
attributes is called as renaming list.

i.e., old name — rename. This list is used to rename the attributes.

' Example: If we want to rename the relation DEPT-LOCATION to DLOCATION and also
the attributes DNo to D-number and DLocation to D_L then we can write this as:

p (DLocation (DNo — D_number, DLocation — D_L) DEPT_LOCATION)

Its not compulsory to rename both relations and attributes. It depends on the user and this
operator simplifies the presentation of different relations (with different names and different
attributes). The exclusion of both the relation names and attribute names is meaningless.

|

Notes Both union and intersection operators are commutative and also associative.

AuB=BUA

Commutative
AN B=BuUA

An B nC) =AnNBNC

Associative
AuBuU C)=AuBuUC

The ‘Minus’ operation is not commutative.

A-B#B-A.

2.2.3 Joins

Joins are used to combine the information of two relations which have at least one field in
common. It is one of the most important operators of RDBMS. In simple words, a join operation

can be defined as a cartesian product followed by selection or projection operators. The different

forms of join operators are,
1. Conditional join

2 Equi-join

3. Natural join
4

Outer join.

Conditional Join

This join returns a relation that includes a set of rows from the cartesian product of two relations

A and B such that each row satisfies a given condition C. This can be denoted as,

A ™.B

LOVELY PROFESSIONAL UNIVERSITY

Notes

29

www.manaraa.com

Database Management Systems/Managing Database

Notes i.e, join A and B based on same condition. This join is equivalent to performing a cartesian
product on two relations followed by a selection operator. Thus,

A ™ B= o (AxB)

The application of conditional join on relations employee and Dept_location results into a new
relation whose degree is 11.

Degree

The degree of a relation is equal to the number of fields (columns).

Consider the equation

Projection 7

Employee > p.no>7 Dept_location
This statement means:

The relation employee and Deptlocation are joined based on the condition DNo>7 and the
resulting relation is projection 7. Projection 7 will include all the tuples from employee
and dept-location where DNo>7.

The operators which can be used with condition in order to compare the two relations are
>, <<, 25

Ename Ed Bdate | Address | Sex [Salary [Dno| Phone Age |DNo|Address
number | (years)

Brown (12345264 (28-7-1968 |Chicago M |40000 8 1773210192 28 8 |Detroit

John [12345261 [1-08-1965 [New M 25000 9 773213218 41 9 |Chicago
Jersey

Brown |12345264 |28-7-1968 |Chicago M (40000 8 773271872 51 8 |Detroit

Bill 12345265 |25-7-1955 |[Detroit F 35000 8 |773271842 51 9 |Chicago

Bill 12345265 |25-7-1955 |[Detroit F (35000 8 773271842 52 9 |Chicago

Jill 12345266 (04-4-1965 |New F (42000 8 1773291828 41 8 |Detroit
York

Jill 12345266 |04-4-1965 [New F 142000 8 1773291628 41 9 |Chicago
York

Donald 12345267 |02-8-1768 |[Detroit M |20000 9 |773423145 28 8 |Detroit
Donald |1234526 |62-8-1768 |Detroit 20000 9 |773423175 28 9 |Chicago

John [12345261 [10-8-1965 [New M (25000 8 773213218 41 8 |Detroit
Jersey

<

Project 7 = Employee ™ Dept_location.

DNo >7

Equi-join

Equi-join is same as conditional join, the only difference being only equity ‘=" operator is used
to join the two relations.

' Example: We may join DEPARTMENT and DEPTJLOCATION relation with the condition
that

DNo,. Department = DNo,.Dept_location.

30 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

Where DNo, and DNo, are two instances of respective relations. This condition indicates - join
the tuples where DNo, = DNo,. The degree of resulting relation will be the sum of degrees of
two relation minus the number of fields they have in common. More precisely,

The degree of relation A is x
The degree of relation B is y and the number of common fields is z

Then degree of resulting relation = x +y - z.

Projection 8

DEPARTMENT . ., separmvent <onezperrocanion DEP T_LOCATION projection 8 will contain
all the fields of DEPARTMENT AND DEPT_LOCATION AND the common fields will be
included only once.

Project 8: Department __ _ Dept-location

Where c = DNo,.Department = DNo,.Dept_location

DName DNo Manager-id DLocation
Administration 7 2431 New York
Research 3731 Detroit
Head Quarters 9 4341 Chicago

Natural Join

This is the default join operation i.e., no condition is specified. Natural join is equivalent to
cartesian product. If two relations have a common field then the application of natural join is
equivalent to equi join and if no field is common then the natural join is cartesian product of the
two relations.

We can denote the operation as,
A < Bwhere A and B are two relations.

If we apply natural join operation as Departments and dept-location then the result will be same
as projection 8 as they have only DNo field in common.

Outer Joins

This is a special case “join” operator which considers the NULL values. Generally a ‘join” operation

performs the cross product of two tables and applies certain join conditions. Then it selects those

rows from the cross product that satisfies the given condition. But with outer joins, DBMS allows

us to select those rows which are common (satisfies the given) and even those rows that do not

satisfy the given condition. To understand this, consider simple instances of project and department
table as shown.

Department D: Project P1
Dept_Mid DNo PNo PNo Pname
101 2 11 44 D
97 5 22 11 A
120 4 33 22 B

If we perform join operation on these two tables.

LOVELY PROFESSIONAL UNIVERSITY

Notes

31

www.manaraa.com

Database Management Systems/Managing Database

32

SELECT *D, * .P,

FROM Department D,, Project P

WHERE D, .PNo = P, .PNo

The result of this statement is as follows:

1

Dept_Mid DNo PNo (PNo) Pname
101 2 11 11 A
97 5 22 22 B

This table shows the simple join operation of two tables - only those rows are selected that
satisfied the condition. However, if we want to include those rows that do not satisfy the
condition, then we can use the concept of Outer joins.

There are three types of outer joins namely: (1) Left Outer Join, (2) Right Outer Join and (3) Full
Outer Join.

1. Left Outer Join: Left outer join lists all those rows which are common to both the tables
and also all those unmatched rows of the table which is specified at the left hand side.

Example: The application of left outer join will result is the following table.
SELECT *.D, * .P,
FROM Department D,, LEFT OUTER JOIN Project P,
WHERE D,.PNo = P,.PNo.

Result
Dept_Mid DNo (PNo) (PNo) Pname
101 11 11 A
97 22 22 B
120 4 33 NULL NULL

So, the left outer join resulted in a relation that have common rows from both the tables
and also the row which does not have match in the other table. The values of the attributes
corresponding to second table are NULL values.

2. Right Outer Join: Right outer join is same as the left outer join but the only difference is
the unmatched rows of second table (specified on the right hand side) are listed along with
the common rows of both the tables.

SELECT *.D,, *.P,
FROM Department D, RIGHT OUTER JOIN Project P,

WHERE D, .PNo = P, .PNo

Dept-mid DNo (PNo) (PNo) Pname
NULL NULL NULL 44 D
101 2 11 11 A
97 5 22 22 C
The values of attributes for the first table are declared as NULL.
3. Full Outer Join: This is same as the right outer join and left outer join but only difference

is unmatched rows of both tables are listed along with the common tows of the tables.

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

SELECT *.D, *.P,
FROM Department D,, FULLOUTER JOIN Project P,
WHERE D,.PNo = P,.PNo

The following table shows the result

Dept_Mid DNo PNo (PNo) Pname
101 2 11 11 A
97 5 22 22 B
120 4 33 NULL NULL
NULL NULL NULL 44 D

In this relation as you can see all the matched and unmatched columns of both the tables are
displayed, the values for the unmatched attributes are entered as NULL.

Division

To understand the concept of division operator consider a simple example of two relations with
attributes customer name, product id.

1. Customer (Customer name, product id)

2. Product (Product id)

The result of applying the division operator on relations customer and product is shown in the
“Result” relation.

A division operator returns a relation (result). That is a collection of rows from first relation
(customer) such that for every value in second relation (product). There exists a pair (customer
name, product id) in the first relation (customer).

= Customer/product = Result

(Customer, Pr.oduct) - (Custmer name)
(Productid)
Customer Product Result = customer/product
Customer name Product id Product id Customer name
Ravi 1021321 1021321 Ravi
Kumar 30991231 30991231 Sharma
Girish 2310219 Kumar
Sharma 1021321 Rahul
Rahul 30991231

The division operation is reverse of cartesian product. We can note that

(Customer/product id) = (customer name) * (product id)

Customer = Result * Product

A binary relationship sets is a relationship between only two entities.

LOVELY PROFESSIONAL UNIVERSITY

Notes

33

www.manaraa.com

Database Management Systems/Managing Database

Notes

Case Smdy — Requirements Analysis

he owner of B&N has thought about what he wants and offers a concise summary:

“I would like my customers to be able to browse my catalog of books and to place orders
over the Internet. Currently, I take orders over the phone. I have mostly corporate
customers who call me and give me the ISBN number of a book and a quantity. I then
prepare a shipment that contains the books they have ordered. If I don’t have enough
copies in stock, I order additional copies and delay the shipment until the new copies
arrive; I want to ship a customer’s entire order together. My catalog includes all the books
that I sell. For each book, the catalog contains its ISBN number, title, author, purchase
price, sales price, and the year the book was published. Most of my customers are regulars,
and I have records with their name, address, and credit card number. New customers have
to call me first and establish an account before they can use my Web site.

On my new Web site, customers should first identify themselves by their unique customer
identification number. Then they should be able to browse my catalog and to place orders
online.”

DBDudes’s consultants are a little surprised by how quickly the requirements phase was
completed it usually takes them weeks of discussions (and many lunches and dinners) to
get this done but return to their offices to analyze this information.

2.3 Summary

° The relation, which is a two-dimensional table, is the primary unit of storage in a relational
database.

° A relational database can contain one or more of these tables, with each table consisting of
a unique set of rows and columns.

° A single record is stored in a table as a row, also known as a tuple, while attributes of the
data are defined in columns, or fields, in the table.

° The characteristics of the data, or the column, relates one record to another.

° Each column has a unique name and the content within it must be of the same type.

2.4 Keywords

Cross Product (*): This operator returns all the tuples of relation A plus all the tuples of
relation B.

Equi-Joins: Equi-join is same as conditional join, the only difference being only equity =’
operator is used to join the two relations.

Joins: Joins are used to combine the information of two relations which have at least one field in
common.

Outer Joins: This is a special case “join” operator which considers the NULL values. Generally a
‘join” operation performs the cross product of two tables and applies certain join conditions.

34 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 2: Database Relational Model

25

Self Assessment

Fill in the blanks:

L. first formulated and proposed in 1969 by Edgar Codd.

2. Consistency is achieved by including declared constraints in the database design, which is
usually referred to as the ..o,

3. A is a set of attributes.

4. A is an accepted visual representation of a relation.

5. is the term used in the theory for what is commonly referred to as a
column

6. is a special case “join” operator which considers the NULL values.

7. e is a collection of facts, which is unorganized but can be made organized
into useful information.

8. A recent development is the Object-Relation type-Object model, which is based on the
assumption that any fact can be expressed in the form of one or more

9. A relation universe U over a header H is a non-empty set of relations with

100 operator can be applied to only those relations that are union compat-ible.

2.6 Review Questions

1. Here we consider three tables for solving queries:

Instance S, of Sailors

sid sname | rating age
22 Dustbin 7 45.0
31 Lubber 8 55.5
58 Rusty 10 35.0

Instance S, of Sailors

sid | sname | rating | age

28 | yuppy 9 35.0
31 | Lubber 8 55.5
44 | guppy 5 35.0

58 | Rusty 10 35.0

Instance R, of Reserves

sid | bid day
22 | 101 | 10/10/96
58 | 103 [11/12/96

(a) Find the names of sailors who have reserved a red or a green boat.

LOVELY PROFESSIONAL UNIVERSITY

Notes

35

www.manaraa.com

Database Management Systems/Managing Database

Notes

2
3
4.
5
6

(b) Find the names of sailors who have reserved at least two boats.
(c) Find the sids of sailors with age over 20 who have not reserved a red boat.

(d) Find the names of sailors who have reserved all boats. The use of the word all (or
every) is a good indication that the division operation might be applicable.

(e) Find the names of sailors who have reserved all boats called Interlake.
Describe the relational model concept of DBMS.

What do you mean by alternatives to the relational model?

Describe NULL concept in database.

Describe various expressions of relational algebra.

Write short note on UNION and INTERSECTION.

Answers: Self Assessment

1. Relational model 2. logical schema
3 heading 4. table
5. Attribute 6. Outer joins
7 Data 8. binary relationships
9 header H 10. Intersection
2.7 Further Readings
Books C.J. Date, Introduction to Database Systems, Pearson Education.

Elmasri Navrate, Fundamentals of Database Systems, Pearson Education.
Martin Gruber, Understanding SQL, BPB Publication, New Delhi

Peter Rob & Carlos Coronel, Database Systems Design, Implementation and
Management, 7th Edition.

Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,
Tata McGraw Hill.

Silberschatz, Korth, Database System Concepts, 5th Edition, McGraw Hill.

Sllberschatz-Korth-Sudarshan, Database System Concepts, 4th Edition, Tata
McGraw Hill

Vai Occardi, Relational Database: Theory & Practice, BPB Publication, New Delhi

A

Y. &,

Online links ~ www.en.wikipedia.org

36

www.webopedia.com

www.web-source.net

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Sartaj Singh, Lovely Professional University

Unit 3: Structured Query Language

Unit 3: Structured Query Language

Notes

CONTENTS

Objectives

Introduction

3.1

32

3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

Structured Query Language (SQL)
Data Definition

Data Types

Schema Definition

Basic Structure of SQL Queries
Creating Tables

DML Operations

3.7.1 SELECT Command

3.7.2 Insert Command

3.73 Update Command

3.74 Delete Command

DDL Commands for Creating and Altering
Set Operations

Aggregate Functions

Null Values

Summary

Keywords

Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to:

Describe SQL and data types

Explain the basic structures of SQL queries

Know how to create tables

Realise aggregate functions and null values

LOVELY PROFESSIONAL UNIVERSITY

37

www.manaraa.com

Database Management Systems/Managing Database

Notes Introduction

SQL stands for Structured Query Language (SQL). It is the most widely used commercial relational
database language. SQL has clearly established itself as the standard relational-database
languages. There are numerous versions of SQL. The original SQL. Version was developed at
IBM’s San Jose Research Laboratory (now the Almaden Research Centre). This language, was
originally called as Sequel, was used as part of System R Project in early 1970s. The Sequel
language has evolved since then, and its name has changed to SQL (Structured Query Language).
SQL uses a combination of relational algebra and relational calculus. Although SQL language is
referred as ‘Query language’, it contains many other capabilities besides querying a data-base.
Within the DBMS, SQL will be used to create the tables, translate user requests, maintain the data
dictionary, maintain the system catalog, update and maintain the tables, establish security, and
carry out backup and recovery procedures.

3.1 Structured Query Language (SQL)

SQL (pronounced “ess-que-el”) stands for Structured Query Language. SQL is used to
communicate with a database. According to ANSI (American National Standards Institute), it is
the standard language for relational database management systems. SQL statements are used to
perform tasks such as update data on a database, or retrieve data from a database. Some common
relational database management systems that use SQL are: Oracle, Sybase, Microsoft SQL Server,
Access, Ingres, etc. Although most database systems use SQL, most of them also have their own
additional proprietary extensions that are usually only used on their system. However, the

standard SQL commands such as “Select”, “Insert”, “Update”, “Delete”, “Create”, and “Drop”
can be used to accomplish almost everything that one needs to do with a database.

The SQL language has several parts:

1. Data-definition language (DDL): The SQL DDL provides commands for defining relation
schemas, deleting relations, and modifying relation schemas.

2. Interactive data-manipulation language (DML): The SQL DML includes a query language
based on both the relational algebra and the tuple relational calculus. It includes also
commands to insert tuples into, delete tuples from, and modify tuples in the database.

3. View definition: The SQL DOL includes commands for defining views.
4. Transaction control: SQL includes commands for specifying the beginning and ending of
transactions.

5. Embedded SQL and dynamic SQL:Embedded and dynamic SQL define how SQL statements
can be embedded within general-purpose programming languages, such as C, C++, Java,
PUr, Cobol, Pascal, and Fortran.

6. Integrity: The SQL DDL includes commands for specifying integrity constraints that the
data stored in the database must satisfy. Updates that violate integrity constraints are
disallowed.

7. Authorization: The SQL DDL includes commands for specifying access rights to relations
and views.

3.2 Data Definition

Data definition in SQL is via the create statement. The statement can be used to create a table,
index, or view (i.e., a virtual table based on existing tables). To create a table, the create statement

38 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 3: Structured Query Language

specifies the name of the table and the names and data types of each column of the table. Its Notes
format is:

create table (relation> (<attribute list>)
where the attribute list is specified as:
<attribute list> :: = <attribute name> (<data type>)[not null] <attribute list>

The data types supported by SQL depend on the particular implementation. However, the
following data types are generally included: integer, decimal, real (i.e., floating point values),
and character strings, both of fixed size and varying length. A number of ranges of values for the
integer data type are generally supported, for example, integer and smallint. The decimal value
declaration requires the specification of the total number of decimal digits for the value and
(optionally), the number of digits to the right of the decimal point. The number of fractional
decimal digits is assumed to be zero if only the total number of digits is specified.

<data type> :: = <integer> | <smallint> | <char(n)> | <float> | <decimal (p[q])>

In addition, some implementations can support additional data types such as bit strings, graphical
strings, logical, data, and time. Some DBMSs support the concept of date. One possible
implementation of date could be as eight unsigned decimal digits representing the data in the
yyyymmdd format. Here yyyy represents the year, mm represents the month and dd represents
the day. Two dates can be compared to find the one that is larger and hence occurring later. The
system ensures that only legal date values are inserted (19860536 for the date would be illegal)
and functions are provided to perform operations such as adding a number of days to a date to
come up with another date or subtracting a date from the current date to find the number of
days, months, or years. Date constants are provided in either the format given above or as a
character string in one of the following formats: mm/dd/yy; mm/dd/yyyy; dd-mm-yy;
dd-mm-yyyy. In this unit, we represent a date constant as eight unsigned decimal digits in the
format yyyymmdd.

3.3 Data Types

In a broad sense, a data type’ defines a set of values, and the allowable operations on those
values. Almost all programming languages explicitly include the notion of data type, though
different languages may use different terminology. Most programming languages also allow
the programmer to define additional data types, usually by combining multiple elements of
other types and defining the valid operations of the new data type.

'i Example: A programmer might create a new data type named “Person” that specifies
that data interpreted as Person would include a name and a date of birth.

Common data types may include:

1. Integers,
2. Floating-point numbers (decimals), and
3. Alphanumeric strings.

Example: In the Java programming language, the “int” type represents the set of 32-bit
integers ranging in value from -2,147,483,648 to 2,147,483,647, as well as the operations that can
be performed on integers, such as addition, subtraction, and multiplication. Colors, on the other
hand, are represented by three bytes denoting the amounts each of red, green, and blue, and one

LOVELY PROFESSIONAL UNIVERSITY 39

www.manaraa.com

Database Management Systems/Managing Database

Notes string representing that color’s name; allowable operations include addition and subtraction,
but not multiplication.

A data type can also be thought of as a constraint placed upon the interpretation of data in a type
system, describing representation, interpretation and structure of values or objects stored in
computer memory. The type system uses data type information to check of computer programs
that access or manipulate the data.

Here are the most common data types:

char(size) Fixed-length character string. Size is specified in parenthesis. Max 255 bytes.

Varchar(size) Variable-length character string. Max size is specified in parenthesis.

number(size) Number value with a max number of column digits specified in parenthesis.

Date Date value

number(size,d) Number value with a maximum number of digits of "size" total, with a
maximum number of "d" digits to the right of the decimal.

3.4 Schema Definition

It is the overall structure is called a database schema. Database schema is usually graphical
presentation of the whole database. Tables are connected with external keys and key colums.
When accessing data from several tables, database schema will be needed in order to find
joining data elements and in complex cases to find proper intermediate tables. Some database
products use the schema to join the tables automatically.

Database system has several schemas according to the level of abstraction. The physical schema
describes the database design at physical level. The logical schema describes the database design
at logical level. A database can also have sub-schemas (view level) that describes different views
of database.

3.5 Basic Structure of SQL Queries

The general format of any SQL query is as follows:
SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification

1. Select Clause: SELECT is a command from DML language which is used to select specific
columns of the tables. Every SQL query starts with SELECT keyword and is followed by
the list of the columns that forms the resulting relation.

2. From: This clause specifies the names of the tables from which data is to be retrieved.
FROM is followed by a set of range values which uniquely identifies a table, when its
name occurs more than once.

3. Where: WHERE keyword is used to specify a condition. All the tuples which satisfies the
condition are selected.

4. Distinct: The use of this keyword is to prevent the duplication of rows, when this keyword
is used all the tuples of the table are unique. There is no redundant data. The use of this
keyword is optional.

5. Select-List: Collection of all the column names that user want in the new relation.

40 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 3: Structured Query Language

6. Qualification: It is a boolean expression representing a condition containing logical Notes

connectives and also comparison operators.

The following tables are used throughout the unit:

Employee
Eid Ename DNo Esal Age Phone
101 John 2 35000 50 24578912
100 Harry 3 18000 29 33273120
107 Henry 7 22000 25 55809192
97 David 5 30000 41 23535135
108 Sam 1 25000 32 24532121
102 Henry 2 22000 35 24578290
120 Smith 4 20000 2 56408489
122 David 6 18000 25 24517635
Department
Dept_Managerid DNo Dname Dlocation PNo
108 1 Administration Hyderabad 44
101 2 Accounts Secunderabad 11
100 3 Packaging Bombay 44
120 4 Research Nellore 33
97 5 Accounts Hyderabad 22
122 6 Operation Pune 44
107 7 Packaging Bangalore 55
Project
PNo Pname Pduration Project_Managerid
11 A 9 Months 102
22 B 14 Months 97
33 C 16 Months 120
44 D 25 Months 108
55 E 9 Months 107

' Example: Consider a simple query,

Query (a): Select the names and salaries of the employees whose salary is greater than 20000.

Solution:

SELECT DISTINCT E.ename, E.esal

FROM Employee E

WHERE E.esal > 20000.

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Database Management Systems/Managing Database

42

Notes The result of these SQL statements is a following relation.
Result using DISTINCT Keyword
Ename Esal
John 35000
Henry 22000
David 30000
Sam 25000

It is quite interesting to note that this is same as using selection and projection operations in

relational algebra.

Tcename, esal (Gesab 20000 (Employee))

Hence, an SQL query is similar to the expression containing selection, projection and cross

product in relational algebra.

]

table i.e., if we write,

SELECT E.ename, E.esal
FROM Employee E
WHERE E.esal > 20000.

The resulting relation will be

Notes Table does not contain all the tuples whose salary is greater than 20,000. The tuple
with ename “Henry” is repeated twice but is displayed only once. This is due to the use of
DISTINCT keyword. If this keyword is not used then one more tuple must be added to

Result without using ‘DISTINCT’ Keyword

Ename Esal
John 35000
Henry 22000
David 30000
Sam 25000
Henry 22000

between two multisets.

The omission of distinct keyword resulted in a vow (Henry, 22000) which is repeated
twice. This is called as multiset of rows. It can be defined as a set consisting of unordered
elements which may consist of many copies of same element but the total number of
copies of the element is important. For example the set (1,2,1,1,) and (2,1,1,1) are same
multiset. Both contains three copies of “1” and only one copy of 2. But the multiset (1,2,2,1)
is different. Number of copies of each element is an important criteria to differentiate

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 3: Structured Query Language

Rules to be Followed in Query Evaluation

Consider a simple query, Query

Query (b): Find the names of employees who are working in ‘accounting” department.

Solution:

SELECT
FROM
WHERE

E.ename

D.Dname = “Accounting’.

Employee E, Department D,

E.eid = D.Dept_managerid AND

In order to solve this, follow the steps as shown

1. Calculate the cross product of the tables whose names are mentioned in the from-list

Eid | Ename | D.No. | Esal [Age| Phone | Dept. |d.no. D.Name D.Location |P.No.
Manage
rid

101 |[John 2 |35000 | 50 (24578912 | 108 1 |Administration |Hyderabad 44
101 (John 2 |35000 | 50 (24578912 | 101 2 | Accounts Secunderabad 11
101 (John 2 |35000 [50 |24578912 | 97 5 |Accounts Hyderabad 22
97 |Harry 5 30000 | 41 23535135 | 108 1 [Administration |Hyderabad 44
97 |Harry 5 [30000 | 41 (23535135 101 2 [Accounts Secunderabad | 11
97 |Harry 5 |30000 | 41 |23535135 | 97 5 |Accounts Hyderabad 22
10 [Sam 1 25000 | 32 24532121 | 108 1 |Administration |Hyderabad 44
108 |Sam 1 |25000 [32 |24532121 | 101 2 | Accounts Secunderabad | 11
108 [Sam 1 25000 32 |24532121 97 5 |Accounts Hyderabad 22
102 |Henry 2 |22000 [35 |24578290 | 108 1 |Administration [Hyderabad 44
102 [Henry 2]22000 [35 24578290 | 101 2 |Accounts Secunderabad | 11
102 [Henry 2 |22000 [35 |24578290 | 97 5 |Accounts Hyderabad 22

2. Among the obtained rows from the cross product, reject the rows that do not satisfy the

qualification condition.
3. The names of the columns that are not present in the select-list are deleted.
4. Remove the rows that have appeared twice when the distinct keyword is not used.

Now let us implement these steps an instance of employee table E

Eid Ename DNo Esal Age Phone
101 John 2 35000 50 2457891
97 Harry 5 30000 41 23555135
108 Sam 1 25000 32 2453212
102 Henry 2 22000 35 24578290
An instance of department table D
Dept_Managerid DNo Dname Dlocation PNo
108 1 Administration Hyderabad 44
101 2 |Accounts Secunderabad 11
97 Accounts Hyderabad 22

LOVELY PROFESSIONAL UNIVERSITY

Notes

43

www.manaraa.com

Database Management Systems/Managing Database

44

Notes

Step 1

Cross product of E and D

Step I1

Apply qualification condition

E.eid = D.Dept_managerid AND

D.Dname = “Accounts’ to the cross product table and select second and sixth row.
Step III

Discard all the unwanted columns and the result contains only the ename field.

Result of Step-II

Hid| Ename |D.No.| Esal |Age| Phone |DepLManagerid| D.No.| D.Natne | D .Location |P.No.

101 |John 2 |35000 | 50 (24578912 101 2 |Accounts |Secunderabad 11

97 |Harry 5 30000 | 41 23535135 97 5 |Accounts [Hyderabad 22

Result of Step-III

Ename
John
Harry

This indicates that John and Harry are the employees whose department name is ‘Accounts’.

2

Task In DBMS when you can use WHERE clause.

3.6 Creating Tables

The create table statement is used to create a new table. Here is the format of a simple create
table statement:

create table “tablename”

(“column1” “data type”,

“column2” “data type”,

“column3” “data type”);

Format of create table if you were to use optional constraints:
create table “tablename”

(“columnl” “data type”

[constraint],

“column2” “data type”

[constraint],

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 3: Structured Query Language

“column3” “data type”
[constraint]);

[] = optional

]

Notes You may have as many columns as you'd like, and the constraints are optional.

=

Lab Exercise create table employee
(first varchar(15),
last varchar(20),
age number(3),
address varchar(30),
city varchar(20),
state varchar(20));

To create a new table, enter the keywords create table followed by the table name, followed by
an open parenthesis, followed by the first column name, followed by the data type for that
column, followed by any optional constraints, and followed by a closing parenthesis. It is
important to make sure you use an open parenthesis before the beginning table, and a closing
parenthesis after the end of the last column definition.

Make sure you seperate each column definition with a comma. All SQL statements should end

“w

witha“;”.

The table and column names must start with a letter and can be followed by letters, numbers, or
underscores - not to exceed a total of 30 characters in length. Do not use any SQL reserved

ou A

keywords as names for tables or column names (such as “select”, “create”, “insert”, etc.).

Data types specify what the type of data can be for that particular column. If a column called
“Last_Name”, is to be used to hold names, then that particular column should have a “varchar”
(variable-length character) data type.

3.7 DML Operations

Various DML (Data Manipulation Language) commands
1. SELECT used to select different columns

2 INSERT to put the data into tables

3. UPDATE to modify the data

4 DELETE to delete the data.

3.7.1 SELECT Command

SELECT command consists of expressions and strings. In the general form of basic SQL query,
the select-list consists of:

1. Expressions and

2. Column name

LOVELY PROFESSIONAL UNIVERSITY

Notes

45

www.manaraa.com

Database Management Systems/Managing Database

46

Notes

SELECT expression AS column name
Where

Expression: It refers to mathematical or string expression, which is specified on column names
and constants.

Column Name: It refers to the column’s new name in the resultant query. It can also include
aggregate functions/operators such as SUM, AVG, COUNT, MIN, MAX etc. It also allows the use
of standard ready to use functions such as sqrt, mod etc.

Querys

Query (a): Find the names of all the employees who are working for “operation” department.
Solution:

SELECT E.ename

FROM Employee E, Department D

WHERE E.DNo =D.DNo AND

D.Dname = “operation”. The answer is “David”

Query (b): Calculate the increment in the salary of the employees who are working on two
different projects carried out at the same location.

Solution:
SELECT E.ename, E.esal + 1000 As salary
FROM Employee, Department D, Department D,
WHERE D, .Dept_managerid = E.eid AND
D, .Dlocation = D,.Dlocation AND
D,.PNO<>D,.PNO
This will result in a new relation when ‘esaF coTumn is renamed as ‘salary” by using AS
Result: Use of ‘AS’ clause

Ename Salary

David 000

Sam 000

With select command we can select specific columns by specifying the names of the columns. But
by using ¥ with select command all the columns can be selected at once (no need to mention the
names of all the columns).

Query (c): List all the information about the employees whose salary is greater than or equal
to 20000.

Solution:

SELECT *

FROM Employee E
WHERE E.esal > = 20000.

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 3: Structured Query Language

The use of “select *' is useful for those queries which are interactive but it is a poor style as it does
not clearly mention the schema of the resulting relation. To determine the schema one has to
refer the relation mentioned in FROM clause.

Result of “Select *”

Eid Ename DNo Esal Age Phone
101 John 2 35000 50 24578912
100 Henry 7 22000 25 55809192
97 David 5 30000 41 23535135
108 Sam 1 25000 32 24532121
102 Henry 2 22000 35 24578290
120 Smith 4 20000 20 56408489

When strings are sorted alphabetically then we can apply comparison operators.
Collation
It is a mechanism that is used to compare the string characters to determine which characters are

smaller (ASCII code) than the other characters in a particular string.

In addition to this, SQL provides another operator LIKE operator to perform pattern matching.
It is of the form,

Scalar expression LIKE literal [Escape character] where,
Scalar expression = string value
Literal =" single character

="%’ zero or more character sequence!

The string “% ar %’ results the set of strings which contains the characters ‘ar” in them. The length
of the resulting string must be atleast four characters.

To understand this, consider the following query

Query (d): List the names of the employees whose name start with ‘"H” and has ‘r” as the third
character.

Solution:

SELECT E.ename AS name, E.sal as salary
FROM Employee E

WHERE E.ename LIKE ‘H-r%’.

This will result in a relation consisting of names of all the employees whose name start with H
and third character is ‘r’. The answer in this case is

Name Salary
Harry 18000

LOVELY PROFESSIONAL UNIVERSITY

Notes

47

www.manaraa.com

Database Management Systems/Managing Database

48

Notes

Query (e): Find all the employees whose department name starts with ‘pac’.
Solution:

SELECT *

FROM Employee E, Department D

WHERE E.eid = D.Dept_Managerid AND

D.Dname LIKE ‘pac %’

3.7.2 Insert Command

The insert statement is used to insert or add a row of data into the table.

To insert records into a table, enter the key words insert into followed by the table name,
followed by an open parenthesis, followed by a list of column names separated by commas,
followed by a closing parenthesis, followed by the keyword values, followed by the list of
values enclosed in parenthesis. The values that you enter will be held in the rows and they will
match up with the column names that you specify. Strings should be enclosed in single quotes,
and numbers should not.

insert into “tablename”
(first_column,...last_column)
values (first_value,...last_value);

In the example below, the column name first will match up with the value ‘Luke’, and the
column name state will match up with the value ‘Georgia’.

' Example: insert into employee

(first, last, age, address, city, state)
values (‘Luke’, ‘Duke’, 45, ‘2130 Boars Nest’,

‘Hazard Co’, ‘Georgia’);

]

Notes All strings should be enclosed between single quotes: ‘string’

3.7.3 Update Command

Update Rows

The syntax for this command is

update tablename set colnamel=colvalue where colname2=colvalue;

' Example: update Student set Name ="Ajay” where id = 2;

This command has updated the Name ‘Rose’ in Student table whose id is 2.

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 3: Structured Query Language

3.7.4 Delete Command

Delete Rows
The syntax for this command is-

delete from tablename where [search_conditions];

' Example: delete from Student where id=1;

This statement is used to delete the row from Student table where the student id is 1.

2

Task Use update command in existing table.

3.8 DDL Commands for Creating and Altering

Various DDL (Data Definition Language) commands
1. CREATE to create a new table

2. ALTER to modify the structure of the table
3. DROP to delete the table from the database

Create Command

Create Table

This statement is used to create a table. The syntax for this command is create table tablename
(colnamel datatype [constraint], colname2 datatype [constraint]);

' Example: create table Student (id number(4) primary key, Name varchar2(20));

It creates the table Student which has two fields id i.e. Student id and Name i.e. the student name.
The number and varchar? are the data types of id and Name respectively. Field ‘id” has the size
4 means it can take id up to 4 digits and same for Name, it can take the size upto 20 characters.
And also added the constraint Primary key to the field “id".

Alter Command

Alter Table

This command is used to add, drop columns in a table. The syntax for this command is

alter table
tablename add colnamel datatype [constraint];
alter table tablename drop column colnamel;

' Example: alter table Student add DOB date

LOVELY PROFESSIONAL UNIVERSITY

Notes

49

www.manaraa.com

Database Management Systems/Managing Database

Notes This command is used to add new field DOB in Student table. It's datatype is date. This is also
used for drop column from the table. It will drop the DOB field by query given below:

Alter table Student drop column DOB;
Drop Command

The drop table command is used to delete a table and all rows in the table.

To delete an entire table including all of its rows, issue the drop table command followed by the
tablename. drop table is different from deleting all of the records in the table.

Deleting all of the records in the table leaves the table including column and constraint
information. Dropping the table removes the table definition as well as all of its rows.

drop table “tablename”

' Example: drop table myemployees;

3.9 Set Operations

The SQL operations union, intersect, and except operate on relations and correspond to the
relational-algebra operations U, n, and -. Like union, intersection, and set difference in relational
algebra, the relations participating in the operations must be compatible; that is, they must have
the same set of attributes.

select customer-name
from depositor

and the set of customers who have a loan at the bank, which can be derived by

select customer-name
from borrower

You will refer to the relations obtained as the result of the preceding queries as d and b,
respectively.

The Union Operation

To find all customers having a loan, an account, or both at the bank, we write

(select customer-name
from depositor)
union

(select customer-name
from borrower)

The union operation automatically eliminates duplicates, unlike the select clause. Thus, in the
preceding query, if a customer-say, Jones-has several accounts or loans (or both) at the bank,
then Jones will appear only once in the result.

If we want to retain all duplicates, we must write union all in place of union:

(select customer-name from depositor)
union all (select Customer-name from borrower)

50 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 3: Structured Query Language

The number of duplicate tuples in the result is equal to the total number of duplicates that
appear in both d and b. Thus, if Jones has three accounts and two loans at the bank, then there
will be five tuples with the name Jones in the result.

The Intersect Operation

To find all customers who have both a loan and an account at the bank, we write

(select distinct customer-name from depositor)
intersect (select distinct customer-name from borrower)

The intersect operation automatically eliminates duplicates. Thus, in the preceding query, if a
customer-say, Jones-has several accounts and loans at the bank, then Jones will appear only once
in the result.

If we want to retain all duplicates, we must write intersect all in place of intersect:

(select customer-name from depositor)
intersect all (select customer-name from borrower)

The number of duplicate tuples that appear in the result is equal to the minimum number of
duplicates in both d and b. Thus, if Jones has three accounts and two loans at the bank, then there
will be two tuples with the name Jones in the result.

3.10 Aggregate Functions

Different aggregate operators that SQL support are,

1. Count: COUNT followed by a column name returns the count of tuple in that column.
If DISTINCT keyword is used then it will return only the count of unique tuple in the
column. Otherwise, it will return count of all the tuples (including duplicates) count (*)
indicates all the tuples of the column.

2. SUM: SUM followed by a column name returns the sum of all the values in that columns.
If DISTINCT keyword is used then it will return the sum of all unique values in the
columns.

3. AVG: AVG followed by a column name returns the average value of that column values.

If DISTINCT keyword is used then it will return the average of distinct values only.
4. MAX: MAX followed by a column name returns the maximum value of that column.
5. MIN: Min followed by column name returns the minimum value of that column.
Queries Based on Aggregate Functions
Query (a): Find the sum of salaries of all the employees and also the minimum, maximum and
average salary.

Solution:

SELECT SUM(E.esal) AS sum_salary, MAX(E.esal) AS Max_salary, MIN(E.esal) AS Min_salary,
AVG([DISTINCT] E.esal) AS Average_salary

FROM Employee E.

This query calculates the total, minimum, maximum and average salaries and also renames the
column names.

LOVELY PROFESSIONAL UNIVERSITY

Notes

51

www.manaraa.com

Database Management Systems/Managing Database

Notes Query (b): List the number of employee in the company
Solution:
SELECT COUNT (*)
FROM Employee E.
Query (c): List the number of employees who are working on project number 44
Solution:
SELECT COUNT(*)
FROM Employee E, Department D
WHERE E.DNo =D.DNo AND
D.PNo = 44.

Query (d): Find the name and age of the eldest employee
Solution:
SELECT E.ename, E.age
FROM Employee E
WHERE E.age = (SELECT MAX(E2.age)
FROM employees E2)
(OR)
The above query can also be written as
SELECT E.ename, E.age
FROM Employee E
WHERE (SELECT MAX (E2.age)
FROM Employees E2 = E.age). Values
=

Task Discuss UNION operations.

3.11 Null Values

Null means nothing. Null values are those values which are assigned to an attribute if its value
is unknown or is not applicable. Null values are used by DBMS when the user does not know the
type information to be entered for a particular field, so the user doesn’t enter any data and DBMS
assigns that field a NULL value. A NULL value does not represent a zero or spaces it just means
the absence of value for that field and this value can be inserted later. For example in the
employee table it is not necessary that all the employees should have a phone number, so for the
employer who does not have one yet, a NULL value can be assigned for that. When we insert a
tuple (124, ‘Kelly’, 6, NULL, 26, NULL) in employer table then for the attribute e.sal and phone
NULL values are assigned. Assignment of NULL value simply indicates that the value is not
known or is inapplicable for that attribute. A field which is not declared as NOT NULL can have
NULL values. But this inclusion of special type of value may result in the complications of other
operations. NULL values are used to deal with the exceptional data or the data that is not

52 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 3: Structured Query Language

complete and any operation performed on null values may result into inconsistent data. In the
following section we will discuss the problems that arises due to NULL value.

Comparison using NULL Values

When we compare valid values with NULL values boolean logic doesn’t come handy i.e., we
can’t use a boolean logic which is two valued - TRUE or FALSE. With NULL values we have to
use a then valued logic - TRUE or FALSE or UNKNOWN. For example, previous; we entered a
NULL value for salary attribute of Kelly. Now if apply condition that-list all the employees
whose salary > 20000, the evaluation of this condition for likely is UNKNOWN because salary
is a NULL value for Kelly. Similarly, for other comparison operators (>, <, =, <>), the evaluation
of the condition will always be unknown.

SQL provides is NULL comparison operator to compare to: NULL values i.e., to test whether a
value is NULL or not. If we apply this operator to salary attribute

IS NULLE.esal
then it will return a TRUE to indicate that esal attribute is a null value.
Logical Connectives AND, OR and NOT
Use of logical connectives with NULL values becomes a lit complicated if we doesn’t use three
valued logic. For example consider the following query.
Query : List all the employees whose age is less than 40 whose salary is grater than 30000.
Solution:
SELECT *
FROM employee E
WHERE E.age<40ANDE.esal>30000

All the tuples that satisfy this condition are selected but what about the tuple we inserted with
esal as NULL value? In this case, this condition will evaluate to unknown logical operators
which involves at least one column whose value is assigned as NULL will always result in an
unknown value. The following table will give you a better understanding of logical operators
when used with null values. Point to note here is that we are using a three valued logic TRUE,
FALSE or UNKNOWN i.e., the logical condition applied may evaluate to any one of them.
(Unknown is used in case of NULL values).

Operation Results and Reason

1. XANDY * TRUE If both X and Y are true

* FALSE If either X or Y is false

* UNKNOWN If either X or Y is unknown (null values)
2. XORY *TRUE If either of them is true.

*FALSE If either of them is false

* UNKNOWN If one of the argument is, false and other is unknown
3. NOT X*TRUE If X is false

*FALSE If Xis true

* UNKNOWN If X is unknown

LOVELY PROFESSIONAL UNIVERSITY

Notes

53

www.manaraa.com

Database Management Systems/Managing Database

Notes Impact on SQL Constructs

This unit deals with the impact of NULL values on the SQL constructs. To understand this impact,
consider a simple student table.

Student Relation
Student_id Std_name Course_id Class Group
1 A 101 2 B
2 B 102 3 NULL
3 C 101 2 A
4 D 103 4 NULL
5 E 104 5 A
6 F 102 3 B
7 G 105 6 NULL
A Simple Query

Query: List all the names of students who belongs to group ‘B’.
Solution:

SELECT *

FROM Student S

WHERE S.group='B’

This solution will result in the set of tuples that satisfies the "WHERE’ condition and all other
tuples that does not satisfy this condition are ignored in addition to these tuples. Tuples with
NULL values are also ignored because for them the condition evaluates to false or unknown.
This elimination of rows that resulted unknown, makes the queries that involves EXISTS and/
or UNIQUE much more simple, easy to understand and makes the evaluation of these queries
(nested queries specially) much more easier.

We know that the comparison of any two fields with null values for equality is an unknown
value. But when it comes to (=) equality operator, the two null value attributes are treated as
equal. If a field contains two null values then that is considered as duplicate values. Two tuples
are said to be duplicates if they hold the same value or if they hold the null values. So, the
comparison of NULL values with the “=" operator always results in TRUE.

The result of all the arithmetic operators (+, -,%,/,*) results in an unknown value (NULL) if any
one of the argument is a NULL value. Similarly with all the aggregate operators the result is
NULL if these operators are applied to a NULL value. Aggregate functions simply delete the
NULL values and then returns the result of aggregate operator i.e., SUM, AVG, MIN, MAX,
COUNT(DISTINCT) simply delete/ignore the NULL values and returns the result of other NOT
NULL tuples. Only exception in aggregate operator is count(*) which does not ignore/ delete.
The NULL values, it counts them and then return the number of tuples in the table.

Disallowing NULL Values

The fields can take on NULL values if they are not declared as NOT NULL, we can restrict the
insertion of null values for the field by declaring that field as NOT NULL. This means that the
field cannot take null values. For the primary key constraint i.e., the field which is declared as

primary key is also declared as NOT NULL. This declaration is implicit declaration done by
DBMS.

54 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 3: Structured Query Language

@ Notes
' Example: CREATE TABLE Student

(Sid INT NOT NULL,

Sname CHAR(10) NUT NULL,
Project VARCHAR(15),

Class INT,

PRIMARY KEY (eid))

In this declaration, creation of student table, Sid is the primary key hence it must be unique and
it should not be NOT NULL. Project field indicates the project taken up by the student. This field
can take NULL values as it is possible that a student is not interested in taking any project/not
yet assigned a project. We restrict the insertion of NULL values in the same field by declaring it
as NOT NULL.

=

Lab Exercise Conceptual Design: Create 3 tables name: Books, Orders and Customers and
make ER Diagram between them.

3.12 Summary

° The Structured Query Language (SQL) is a 4th Generation Language (4GL) generally used
for querying the database. Following is a consolidated list of SQL statements:

3

SELECT Data retrieval statement

3
-

3

INSERT Add rows

3
-

3
<

UPDATE Update row

3

DELETE Delete rows

3
-

3
<

CREATE Create new tables/views

3

ALTER Alter the schema or view

3
-

3

DROP Delete the table

3
-

3

RENAME Rename a table

3
-

3

COMMIT Buffer to disk

3
-

3
<

ROLLBACK Rollback the changes made

3
<

GRANT Assign privileges to users
& REVOKE Remove the assigned privileges

° The basic commands that can be used under Oracle 8i environment were discussed. For
example, @,/are some of the commands.

° Oracle9i SQL *PLUS offers a rich set of data types like integer, float, number, date, etc.

° The SELECT statements is used retrieve a set of rows from a specified table depending
upon the WHERE clause.

LOVELY PROFESSIONAL UNIVERSITY 55

www.manaraa.com

Database Management Systems/Managing Database

56

Notes

° SQL supports many functions that can be used with dates, numbers, and character strings.
You can also convert from one data type to another implicitly or explicitly. For example,
TO_DATE, TO_CHAR, and so on.

° Another set of functions that are used for data manipulation are group functions like AVG,
MAX, COUNT, WIN, etc.
° To join two or more tables we have equi join, self join, and outer (uses a + sign). To write

certain complicated queries, use of subqueries makes things easier. A subquery is written
in the where condition of the outer query along with operators like =, IN, ANY, ALL or
EXISTS.

. SQL also supports set operations like UNION, DIFFERENCE, and MINUS. There a number
of database objects that can be created and altered:

<

3 CREATE TABLE Creating a new table

3
<

CREATE VIEW Creating a new view

3
<

CREATESEQUENCE Creating an automatic sequence of numbers

3
<

INDEX Creating an index on columns other than primary key for
efficient data retrieval

° The two statements GRANT and REVOKE are important for assigning or removing
privileges of a table or column or any database object.

° It is possible to set locks to tables in a multi-user environment for efficient security
purpose. Finally, several additional examples were discussed on SQL.

3.13 Keywords

Creating table: To create a table, the create statement specifies the name of the table and the
names and data types of each column of the table.

Data Definition Language (DDL): This part of SQL supports the creation, deletion and modification
of tables. Integrity constraints can be defined on tables, either when the table is created or later.
The DDL also provides commands for specifying access rights to tables. The commercial
implementations also provide commands for creating and deleting indexes.

Data Manipulation Language (DML): This part of SQL allows users to pose queries, insert
tuples, delete tuples and modify tuples (rows) in the database.

Select clause: SELECT is a command from DML language which is used to select specific columns
of the tables.

SQL: SQL is the standard language for relational database management systems.

3.14 Self Assessment

Choose the appropriate answer:
1. SQL stands for:
(@) Systematic Query Language
(b) Semantic Query Language
(c) Structured Query Language
(

d) Structured Queue Language

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 3: Structured Query Language

ANSI stands for:

(@) American National Standards Institute
(b) American National Systematic Institute
(c) American Nation Standards Institute

(d) Ahmedabad National Standards Institute
DML stands for:

(@) Document Manipulation Language

(b) Data Manipulation Language

(c) Data Maintain Language

(d) Database Manipulation Language

Fill in the blanks:

$ ® N g

......................... can be used to create a table, index, or view.
The ..o, supported by SQL depend on the particular implementation.
Database system has several schemas according to the level of

............................... keyword is used to specify a condition.

The woooveeeeeeceeiee statement is used to insert or add a row of data into the table.
The drop table command is used to delete a table and in the table.
Null meansc.ccoceeveeeeennene

3.15 Review Questions

¥ ® N o g k& w M=

=
S

Define query.

What is SQL? Explain its features.

Explain with examples different SQL commands used for creating and deleting relations.
Explain the basic structure of SQL query.

List some of the set operations supported by SQL. Give examples.

Explain different comparison and logical operators supported by SQL. Give examples.
Explain how to order the tuples in a table using SQL?

Explain group-by clause, aggregate functions and having clause available in SQL.
Explain with examples different SQL commands used for modifying the database.

Write a query to find the distinct customers and branch names of the branches situated in
the city “Hyderabad” where the customers have taken the loans.

Answers: Self Assessment

© 2.
(b) 4. data definition

LOVELY PROFESSIONAL UNIVERSITY

Notes

57

www.manaraa.com

Database Management Systems/Managing Database

Notes 5. data types 6. abstraction
7. WHERE 8. insert
9. all rows 10. nothing
3.16 Further Readings
Books C.J. Date, Introduction to Database Systems, Pearson Education.

Elmasri Navrate, Fundamentals of Database Systems, Pearson Education.
Martin Gruber, Understanding SQL, BPB Publication, New Delhi

Peter Rob & Carlos Coronel, Database Systems Design, Implementation and
Management, 7th Edition.

Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,
Tata McGraw Hill.

Silberschatz, Korth, Database System Concepts, 5th Edition, McGraw Hill.

Sllberschatz-Korth-Sudarshan, Database System Concepts, 4th Edition, Tata
McGraw Hill

Vai Occardi, Relational Database: Theory & Practice, BPB Publication, New Delhi

AN
Y. 4,
Online links ~ www.en.wikipedia.org
www.webopedia.com

www.web-source.net

DVELY PROFESSIONAL UNIVERSITY

www.manharaa.com

Sarabjit Kumar, Lovely Professional University Unit 4: Advanced SQL

Unit 4: Advanced SQL Notes

CONTENTS

Objectives

Introduction

41 Subqueries

42 Nested Subqueries

43 Complex Queries

44 Views

45 Joined Relations
4.5.1 Inner Join
4.5.2 Natural Join
4.5.3 Left Outer Join
4.5.4 Full Outer Join

4.6 Summary

47 Keywords

4.8 Self Assessment

49 Review Questions

410 Further Readings

Objectives

After studying this unit, you will be able to:

. Describe subqueries and nested subqueries
° Explain complex queries

. Define views

° Discuss joined relations

Introduction

In this unit, we give you the details of some of the advanced features of Structured Query

Language. We will discuss Assertions and Views, Triggers, Standard Procedure and Cursors.

The concepts of embedded and dynamic SQL and SQLJ, which is used along with JAVA, are also

been introduced. Some of the advanced features of SQL have been covered. We will provide

examples in various sections rather than including a separate section of examples. The examples

given here are in a SQL3 standard and will be applicable for any commercial database management
system that supports SQL3 standards.

LOVELY PROFESSIONAL UNIVERSITY 59

www.manaraa.com

Database Management Systems/Managing Database

Notes 4.1 Subqueries

The expression following WHERE can be either a simple predicate as explained above or it can
be a query itself! This part of the query following WHERE is called a Subquery.

A subquery, which in turn is a query can have its own subquery and the process of specifying
subqueries can continue ad infinitum! More practically, the process ends once the query has
been fully expressed as a SQL statement.

Subqueries can appear when using the comparison predicate, the IN predicate and when
quantifiers are used.

Subqueries are similar to SELECT chaining. While SELECT chaining combines SELECTs on the
same level in a query, however, subqueries allow SELECTs to be embedded inside other queries.
They can perform several functions:

1. They can take the place of a constant.
2. They can take the place of a constant yet vary based on the row being processed.
3. They can return a list of values for use in a comparison.

Subqueries always appear in the HAVING clause or the WHERE clause of a query. A subquery
may itself contain a WHERE clause and/or a HAVING clause, and, consequently.

' Example: SELECT AVG(salary)FROM employee WHERE title = ‘Programmer’;

This statement will return the average salary for all employees whose title is equal to
‘Programmer’

The HAVING clause allows you to specify conditions on the rows for each group - in other
words, which rows should be selected will be based on the conditions you specify. The HAVING
clause should follow the GROUP BY clause if you are going to use it.

HAVING clause syntax:
SELECT columnl, SUM(column?2)
FROM “list-of-tables”
GROUP BY “column-list”
HAVING “condition”;

HAVING can best be described by example. Let’s say you have an employee table containing the
employee’s name, department, salary, and age. If you would like to select the average salary for
each employee in each department, you could enter:

SELECT dept, avg(salary)
FROM employee
GROUP BY dept;
But, let’s say that you want to ONLY calculate & display the average if their salary is over 20000:
SELECT dept, avg(salary)
FROM employee
GROUP BY dept
HAVING avg(salary) > 20000;

60 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 4: Advanced SQL

4.2 Nested Subqueries Notes

A query inside a query is called as nested query. Inner query is called as sub query. Sub query is
usually present in WHERE or HAVING clause.

Consider the following example,
Querys

Query (a): Find the names of employees who are working in department number 6.
Solution:
SELECT E.ename
FROM Employee E
WHERE E.eid IN (SELECT D.Dept_managerid
FROM Department D
WHERE D.DNo = 6)
This query returns “David”
These SQL statements can be read as,

Select employee name from table employee E such that E.eid is present in dept_managerid
where department number is 6. The DBMS first solves the sub query,

SELECT D.Dept_managerid
FROM Department D
WHERE D.DNo=6
and retrieves the managerid of all the employees who are working for department number 6.
Result: D.Dept_managerid
122

Next, the DBMS checks the presence of this id in employee table. If there exists an id = 122 then
it displays the result for that id.

Result: ename
David
The main query that contains the sub queries in called as outer query.

As already mentioned IN can also be replaced with NOT IN. In this case it checks for the tuples
which are not present in the given relation. In order to find the employee who are not working
in de number 6, we just have to replace IN by NOT IN and the whole query remains the same.

SELECT Rename

FROM Employee E

WHERE E.eid NOT IN (SELECT D.Dept_managerid
FROM Department D

WHERE D.DNo=6)

Query (b): Find the names of employees who are working on project C.

LOVELY PROFESSIONAL UNIVERSITY 61

www.manaraa.com

Database Management Systems/Managing Database

Notes Solution:
SELECT E.ename
FROM Employee E
WHERE E.eid IN (SELECT D.Dept_managerid
FROM Department D
WHERE D.PNo IN (SELECT P.PNo
FROM Project P
WHERE P.Pname =‘C’)

This query is solved in a bottom-up approach. First, the second sub query is solved and all the
project numbers are selected whose name is C. This output is fed as input to first sub query
where in the department manager id is selected. Finally the names of employees are listed
whose id is present in the relation.

Step by Step Procedure
1. PNo. is selected where pname is ‘C’ i.e. 33.
2. The first sub query checks whether this PNo is present in department or not. If it is present

then its corresponding dept_managerid is selected i.e., 120.

3. The main query checks whether this ‘id” is present in employee or not. If it is present then
corresponding ename is retrieved i.e., Smith.

2

Task Discuss the purpose of HAVING clause.

4.3 Complex Queries

In addition to the simple queries shown in the previous section, you can create complex queries,
which may contain more than one SELECT statement. At the highest level, a query is a SELECT
statement, which consists of a query expression followed by an optional ORDER BY clause. At
the next lower level, you can combine different query blocks into a single query expression with
the UNION operator. Lower still, inside each query block is an optional search condition, which
can contain predicates that incorporate subqueries. A subquery is always a single query block
(SELECT) that can contain other subqueries but cannot contain a UNION. A query expression can
contain a maximum of 16 query blocks from all sources, including UNION, subqueries, and the
outer query block.

You can create a complex query by using the following:

1. UNION operator, which allows you to take the union of all rows returned by several
query blocks in one SELECT statement.

2. Subqueries (also known as nested queries), which allow you to embed a query block
within the search condition of an outer SELECT statement.

3. Special predicates, such as ANY, ALL, SOME, EXISTS, and IN, which allow you to compare
the value of an expression with the value of special structures and subqueries.

62 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 4: Advanced SQL

Figure 4.1: Range of Complex Query Types

SELECT Cemmand

RueryExuression
Querysiock
SELECT Solgctlisi
FROW Jablelist
WIICRC I SoarchTondition }-o—-—- Ses Below
AROUP BY Columrlist
HAVING SearchCondidion

URNION [ALL)
QueryBiack
SELECT Saluctlisr i
FROM Tablelizl Repeatable Unit
WHEHE SaarchConoinon ;‘;‘tw":‘n":’:ch
GIOUP BY Cofumri st
HAaVINC EearchZondition

ORDER BY volumn namss/mumbers direction
Search>ondltan ¥

[HOT] [Fredicare] L{’“‘D} INOT . [Fodicaw]] [-- -

———— e
e e e o, ooy s

sKpresaion operator quantifior e e
- > ALL SUEQueny
3 >
<= = ANY Valiat is'
NS™] 1N
[NO™] BXISTS SONE Expression
[ND™] BETWFEN
[NO™] UKE ‘Dattom”
ISNOT NULL
“Hoztlanahia

UNION Queries

A SELECT statement can consist of several query blocks connected by UNION or UNION ALL
statements. Each individual SELECT statement returns a query result which is a set of rows
selected from a specified table or tables. The union of these query results is presented as a table
that consists of all rows appearing in one or more of the original query results.

If only the UNION statement is used, all duplicate rows are removed from the final set of rows.
In this case, the maximum size of a tuple in the query result is given by the following formula:

(SelectListItems +1)*2 + (SumListLengths) <= 4000
where,
SelectListItems is the number of items in the select list.
SumListLengths is the sum of the lengths of all the columns in the select list.

At compile time, SumKeyLengths is computed assuming columns of NULL and VARCHAR
contain no data. At run time, the actual data lengths are assumed.

If the UNION ALL operator is used, duplicates are not removed. Candidates for duplicate removal
are evaluated by comparing entire tuples, not just a single field. Only if two or more rows are
entirely alike are the duplicates removed. In the case of the UNION ALL operator, the maximum
size of a tuple in the query result is 3996 bytes, as it is for a non-UNION query expression. You
cannot use LONG columns in a UNION statement.

LOVELY PROFESSIONAL UNIVERSITY

Notes

63

www.manaraa.com

Database Management Systems/Managing Database

Notes
'i Example: To find all customers having a loan, an account, or both at the bank, we write

(select customer-name
from depositor)
union

(select customer-name
from borrower)

The union operation automatically eliminates duplicates, unlike the select clause. Thus, in the
preceding query, if a customer-say, Jones-has several accounts or loans (or both) at the bank,
then Jones will appear only once in the result.

If we want to retain all duplicates, we must write union all in place of union:

(select customer-name

from depositor)

union all (select Customer-name
from borrower)

The number of duplicate tuples in the result is equal to the total number of duplicates that
appear in both d and b. Thus, if Jones has three accounts and two loans at the bank, then there
will be five tuples with the name Jones in the result.

4.4 Views

A view is a virtual table, which does not actually store data. But if it does not store any data, then
what does it contain?

A view actually is a query and thus has a SELECT FROM WHERE clause which works on
physical table which stores the data. Thus, the view is a collection of relevant information for a
specific entity.

' Example: A student’s database may have the following tables:
STUDENT (name, enrolment-no, dateofbirth)
MARKS (enrolment-no, subjectcode, smarks)

For the database above a view can be created for a Teacher who is allowed to view only the
performance of the student in his/her subject, let us say MM-01.

CREATE VIEW SUBJECT-PERFORMANCE AS
(SELECT s.enrolment-no, name, subjectcode, smarks
FROM STUDENT s, MARKS m

WHERE s.enrolment-no = m.enrolment-no AND
subjectcode ‘"MM-01" ORDER BY s.enrolment-no;

A view can be dropped using a DROP statement as:

DROP VIEW SUBJECT-PERFORMANCE;

The table, which stores the data on which the statement of the view is written, is sometimes
referred to as the base table. You can create views on two or more base tables by combining the
data using joins. Thus, a view hides the logic of joining the tables from a user. You can also index
the views too. This may speed up the performance. Indexed views may be beneficial for very
large tables. Once a view has been created, it can be queried exactly like a base table.

64 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 4: Advanced SQL

% Notes
' Example: SELECT *

FROM STUDENT-PERFORMANCE
WHERE smarks >50

How the Views are Implemented?

There are two strategies for implementing the views. These are:
1. Query modification
2. View materialisation.

In the query modification strategy, any query that is made on the view is modified to include the
view defining expression.

' Example: Consider the view STUDENT-PERFORMANCE. A query on this view may be:
The teacher of the course MM-0a wants to find the maximum and average marks in the course.
The query for this in SQL will be:

SELECT MAX(smarks), AVG(smarks)
FROM SUBJECT-PERFORMANCE

Since SUBJECT-PERFORMANCE is itself a view the query will be modified automatically as:

SELECT MAX (smarks), AVG (smarks)
FROM STUDENT s, MARKS m

WHERE s.enrolment-no=m.enrolment-no AND subjectcode= “MM-01";

However, this approach has a major disadvantage. For a large database system, if complex
queries have to be repeatedly executed on a view, the query modification will have to be done
each time, leading to inefficient utilisation of resources such as time and space.

The view materialisation strategy solves this problem by creating a temporary physical table
for a view, thus, materialising it. However, this strategy is not useful in situations where many
database updates are made on the tables, which are used for view creation, as it will require
suitable updating of a temporary table each time the base table is updated.

Can views be used for Data Manipulations?

Views can be used during DML operations like INSERT, DELETE and UPDATE. When you
perform DML operations, such modifications need to be passed to the underlying base table.
However, this is not allowed on all the views. Conditions for the view that may allow Data
Manipulation are:

A view allows data updating, if it follows the following conditions:
1. If the view is created from a single table, then:

(@) For INSERT operation, the PRIMARY KEY column(s) and all the NOT NULL columns
must be included in the view.

(b) View should not be defined using any aggregate function or GROUP BY or HAVING
or DISTINCT clauses. This is due to the fact that any update in such aggregated
attributes or groups cannot be traced back to a single tuple of the base table. For
example, consider a view avgmarks (coursecode, avgmark) created on a base table

LOVELY PROFESSIONAL UNIVERSITY 65

www.manaraa.com

Database Management Systems/Managing Database

Notes student(st_id, coursecode, marks). In the avgmarks table changing the class average
marks for coursecode “MA 03” to 50 from a calculated value of 40, cannot be accounted
for a single tuple in the Student base table, as the average marks are computed from
the marks of all the Student tuples for that coursecode. Thus, this update will be
rejected.

2. The views in SQL that are defined using joins are normally NOT updatable in general.

3. WITH CHECK OPTION clause of SQL checks the updatability of data from views, therefore,
must be used with views through which you want to update.

Views and Security

Views are useful for security of data. A view allows a user to use the data that is available
through the view; thus, the hidden data is not made accessible. Access privileges can be given on
views. Let us explain this with the help of an example.

Consider the view that we have created for teacher-STUDENT-PERFORMANCE. We can grant
privileges to the teacher whose name is “ABC’ as:

GRANT SELECT, INSERT, DELETE ON STUDENT-PERFORMANCE TO ABC WITH GRANT
OPTION;

|

Notes The teacher ABC has been given the rights to query, insert and delete the records on
the given view. Please also note s/he is authorised to grant these access rights (WITH
GRANT OPTION) to any data entry user so that s/ he may enter data on his/her behalf. The
access rights can be revoked using the REVOKE statement as:

REVOKE ALL ON STUDENT-PERFORMANCE FROM ABC;

2

Task Create a new table with five column and create view on this table.

4.5 Joined Relations

SQL joins are used to query data from two or more tables, based on a relationship between
certain columns in these tables. A JOIN is a means for combining fields from two tables by using
values common to each.

SQL is relational database query language and as such, one of its most important features is its
ability to retrieve information from several different related tables. In relational database terms,
this process is called a join. The tables to be joined are named in the From clause of the Select
with each table name separated by a comma. The relationships between the tables in a join are
defined by the predicate in the Where clause.

SQL specifies four types of JOINS:

1. INNER
2 OUTER
3. LEFT
4 RIGHT
66 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 4: Advanced SQL

4.5.1 Inner Join Notes

This is the simplest of all join operations.

Inner joins return all rows from multiple tables where the join condition is met. There must be
a matching value in a field common to both tables. An Inner Join cannot be nested inside a Left
Join or Right Join, it creates a new result table by combining column values of two tables based
upon the join-predicate. The join condition determines whether both records are matched or
not. If there is no match found, no records is returned.

loan inner join borrower on loan.loan-no = borrower.loan-no

The expression computes the theta join of the loan and the borrower relations, with join condition
being loan.loan_no = borrower.loan_no. The attributes of the result consist of the attributes of
the left-hand-side relation followed by the attributes of the right hand side of the relation.

|

Notes The attribute loan _no appears twice in the result. The first occurrence is from loan,
and the second is from borrower.

Result of loan innter join borrower on loan.loan_no = borrower.loan_no

We rename the result relation of a join and the attributes of the result relation using as clause, as
shown below:

loan inner join borrower on 1 oan.loan_no = borrower.loan_no
As Inbr (branch, loan_no, amount, cust, cust_loan_no)

The second occurrence of loan_no has been renamed as cust_loan_no. the ordering of the attributes
in the result of the join is important for renaming.

Br_name Loan_no Loan_amount

K R CIRCLE KL1 6000
SARASWATHIPURAM SLI 7000
K R CIRCLE KL2 4000

Loan relation

Cust_name Loan_no

Padma GLI
Vijaya SLI
Shreya KL2

Borrower relation

Br_name Loan_no Loan_amount Cust_name Loan_no
SARASWATHIPURAM SLI 7000 Vijaya SL1
KR CIRCLE KL2 4000 Shreya KL2
LOVELY PROFESSIONAL UNIVERSITY 67

www.manaraa.com

Database Management Systems/Managing Database

Notes 4.5.2 Natural Join

Natural join combines two tables based on their common columns i.e. columns with the same
name. Therefore join condition is hidden and dependant on table structures at runtime. This
obviously creates potential future danger-as soon as table structure changes, result can become
unpredictable yet syntactically correct it offers a further specialization of equi-joins. The join
predicate arises implicitly by comparing all columns in both tables that have the same column-
name in the joined tables. The resulting joined table contains only one column for each pair of
equally-named columns.

As previously noted in RELATIONAL ALGEBRA, this operation when performed, forces an
equality on attributes, which are common in the relation specified. If we take a natural join of
borrower and loan, then equality is forced on the attribute loan_no. loan natural join borrower

The only attribute common to loan and borrower is loan_no. the result of the expression is
similar to the result of the inner join except that the attribute loan_no appears only once in the
result of the natural join.

Br_name Loan_no Loan_amount Cust_name

SARASWATHIPURAM SLI 7000 Vijaya

K RCIRCLE KL2 4000 Shreya

4.5.3 Left Outer Join

In left outer join: rows satisfying selection criteria from both joined tables are selected as well
as all remaining rows from left joined table are being kept along with Nulls instead of actual
right joined table values. or we can say it returns all the values from the left table, plus matched
values from the right table (or NULL in case of no matching join predicate). If the right table
returns one row and the left table returns more than one matching row for it, the values in the
right table will be repeated for each distinct row on the left table.

The LEFT OUTER JOIN expression is written as follows:

loan left outer join borrower on loan.loan_no = borrower.loan_no

Br_name Loan_no Loan_amount Cust_name Loan_no
SARASWATHIPURAM SLA 7000 Vijaya SLI
KRCIRCLE KL2 4000 Shreya KL2
KRCIRCKI KLI 6000 Null Null

4.5.4 Full Outer Join

The full outer join type is a combination of the left and right outer-join types. After the result of
the inner join is computed, tuples form the left-hand-side relation that did not match with any
from the right- hand-side are extended with nulls and are added to the result. Similarly, tuples
from the right-hand-side relation that did not match with any tuples form the left-hand side
relation are also extended with nulls, and are added to the result.

loan full outer join borrower using (loan_no)

68 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 4: Advanced SQL

The result of the expression is as follows: Notes
Br_name Loan_no Loan_amount Cust_name
SARASWATHIPURAM SL1 7000 Vijaya
K RCIRCLE KL2 4000 Shreya
Null Gl Null Padma
K R CIRCLE KLI 6000 Null

Find all customers who have either an account or a loan (but not both) at the bank
Select cust_name

From (depositor natural full outer join borrower)

Where account_no is null or loan_no is null

g

Task Role of natural join in DBMS.

=

Lab Exercise Create a table with 6 column and enter at least five values in the table and do
this exercise:

1. select top 40% from table

2. select columnl, column2 and column3 simultaneously from table (joint all)
4.6 Summary
o SQL also has a good programming level interfaces.
o The SQL supports a library of functions for accessing a database.

o These functions are also called the Application Programming Interface (API) of SQL.

o The advantage of using an APl is that it provides flexibility in accessing multiple databases
in the same program irrespective of DBMS, while the disadvantage is that it requires more
complex programming.

4.7 Keywords

Full Outer Joins: The full outer join type is a combination of the left and right outer-join types.
Inner Joins: Inner joins return all rows from multiple tables where the join condition is met.

Natural Joins: Natural join combines two tables based on their common columns i.e. columns
with the same name.

Nested Query: A query inside a query is called as nested query.

Subqueries: Subqueries are similar to SELECT chaining. While SELECT chaining combines
SELECTs on the same level in a query, however, subqueries allow SELECTs to be embedded
inside other queries.

Views: A view is a virtual table, which does not actually store data.

LOVELY PROFESSIONAL UNIVERSITY 69

www.manaraa.com

Database Management Systems/Managing Database

Notes 4.8 Self Assessment

Fill in the blanks:

1. You can combine different query blocks into a single query expression with the
.............................. operator.
2. A subquery is always a single query blockc.cccceveunine that can contain other subqueries

but cannot contain a UNION.

3. A view can be dropped using ac.cccceevururinen. statement.

4. are useful for security of data.

5. are used to query data from two or more tables, based on a relationship
between certain columns in these tables.

6. AN e cannot be nested inside a Left Join or Right Join.

7. e combines two tables based on their common columns.

8. Subqueries are similar to SELECTccccoeunurunee.

9. The . clause should follow the GROUP BY clause.

10. A query inside a query is called ascccccceuvvruenne. query.

4.9 Review Questions

1. Create a table with five columns and apply subqueries concept on that table.

2. You already create a table in question no. 1, then apply SQL IN concept on that table with
suitable example.

What do you mean by ORDER BY clause? Apply this clause with a suitable example.
Explain UNION clause in detail with the help of example.
How will you drop views? Explain with suitable example.

What is the purpose of joins in SQL? Explain inner join.

N o g kW

Create a table name student with five important column and apply order by and having
clause on it.

@

What do you mean by complex queries?
9. How will you drop a view? Explain with example.

10. Distinguish between left and right joins.

Answers: Self Assessment

1. union 2. (Select)
3. drop 4. Views
5. SQL joins 6. inner join
7. Natural join 8. chaining
9. having 10. nested

70 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 4: Advanced SQL

4.10 Further Readings

N

Books

i

Online links

C.J. Date, Introduction to Database Systems, Pearson Education.
Elmasri Navrate, Fundamentals of Database Systems, Pearson Education.
Martin Gruber, Understanding SQL, BPB Publication, New Delhi

Peter Rob & Carlos Coronel, Database Systems Design, Implementation and
Management, 7th Edition.

Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,
Tata McGraw Hill.

Silberschatz, Korth, Database System Concepts, 5th Edition, McGraw Hill.

Sllberschatz-Korth-Sudarshan, Database System Concepts, 4th Edition, Tata
McGraw Hill

Vai Occardi, Relational Database: Theory & Practice, BPB Publication, New Delhi

www.en.wikipedia.org

www.webopedia.com

www.web-source.net

)VELY PROFESSIONAL UNIVERSITY

Notes

71

www.manharaa.com

Database Management Systems/Managing Database

Pawan Kumar, Lovely Professional University

72

Notes

Unit 5: Integrity Constraints

CONTENTS

Objectives

Introduction

51 Integrity Constraints
5.2 Authorization

53 DCL Commands
54 Embedded SQL
55 Dynamic SQL

5.6 Summary

5.7 Keywords

5.8 Self Assessment
5.9 Review Questions

510 Further Readings

Objectives

After studying this unit, you will be able to:

° Describe integrity constraints

° Know authorization

° Explain DCL commands

° Describe embedded and dynamic SQL
Introduction

Sometimes a class type really represents a collection of individual components. Although this
pattern can be modeled by an ordinary association, its meaning becomes much clearer if we use
the notation for an aggregation. Database objects map capability between Java objects and a
relational database (RDBMS) in a standard an highly extensible way, so that the objects themselves
can be used in your application, removing the need to embed SQL code directly into your Java
applications.

5.1 Integrity Constraints

Integrity constraints ensure that changes made to the database by authorized users do not result
in a loss of data consistency. Thus, integrity constraints guard against accidental damage to the
database.

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 5: Integrity Constraints

Besides the cell name, cell length and cell data type, there are other parameters i.e. other data
constraints that can be passed to the DBA at cell creation time.

These data constraints will be connected to a cell by the DBA as flags. Whenever a user attempts
to load a cell with data, the DBA will check the data being loaded into the cell against the data
constraints defined at the time the cell was created. If the data being loaded fails any of the data
constraint checks fired by the DBA, the DBA will not load the data into the cell, reject the entered
record, and will flash an error message to the user.

These constraints are given a constraint name and the DBA stores the constraints with its name
and instructions internally along with the cell itself.

The constraint can either be placed at the column level or at the table level.

Column Level Constraints: If the constraints are defined along with the column definition, it is
called as a column level constraint. Column level constraint can be applied to anyone column at
a time i.e. they are local to a specific column. If the constraint spans across multiple columns, the
user will have to use table level constraints.

Table Level Constraints: If the data constraint attached to a specific cell in a table references the
contents of another cell in the table then the user will have to use table level constraints. Table
level constraints are stored as a part of the global table definition.

NULL Value Concepts

While creating tables, if a row lacks a data value for a particular column, that value is said to be
null. Columns of any data types may contain null values unless the column was defined as not
null when the table was created.

Principles of NULL Values

1. Setting a null value is appropriate when the actual value is unknown, or when a value
would not be meaningful.

2. A null value is not equivalent to a value of zero.
3. A null value will evaluate to null in any expression. e.g. null multiplied by 10 is null.
4. When a column name is defined as not null, then that column becomes a mandatory

column. It implies that the user is forced to enter data into that column.

Example: Create table client master with a not null constraint on columns client no,
Name, address, address2.
NOT NULL as a column constraint:
CREATE TABLE client master
(client_no varchar2(6) NOT NULL,
name varchar2(20) NOT NULL,
address 1 varchar2(30) NOT NULL,
address2 varchar2(30) NOT NULL,
city varchar2(15), state varchar2(15), pin code number(6),
remarks varchar2(60), bal_due number (10,2));

LOVELY PROFESSIONAL UNIVERSITY

Notes

73

www.manaraa.com

Database Management Systems/Managing Database

74

Notes

Primary Key Concepts

A primary key is one or more columns in a table used to uniquely identify each row in the table.
Primary key values must not be null and must be unique across the column.

A multicolumn primary key is called a composite primary key. The only function that a primary
key performs is to uniquely identify a row and thus if one column is used it is just as good as if
multiple columns are used. Multiple columns i.e. (composite keys) are used only when the
system designed requires a primary key that cannot be contained in a single column.

Example: Primary Key as a Column Constraint:
Create client_master where client_no is the primary key.
CREATE TABLE client master
(client_no varchar2(6) PRIMARY KEY,
name varchar2(20), add}-essl varchar2(30), address2 varchar2(30),
city varcbar2(15), state varchar2(15), pincode number(6),
remarks varchar2(60), bal_due number (10,2));

Primary Key as a Table Constraint:

Create a sales order details table where

Column Name Data Type Size Attributes
S_order_no varchar2 6 Primary Key
product_no varchar2 6 Primary Key
qty_ordered Number 8

qty-disp Number 8
product_rate Number 8,2

CREATE TABLE sales order details

(s_order_no varchar2(6), product_no varchar2(6),
qty _ordered number(8), qty - disp number(8),
product_rate number(8,2),

PRIMARY KEY (s_order_no, product_no));

Unique Key Concepts

A unique key is similar to a primary key, except that the purpose of a unique key is to ensure that
information in the column for each record is unique, as with telephone or driver’s license
numbers. A table may have many unique keys.

'i Example: Create Table client_master with unique constraint on column client_no
UNIQUE as a Column Constraint:

CREATE TABLE client master

(client_no varchar2(6) CONSTRAINT cnmn - ukey UNIQUE,
name varchar2(20), address 1 varchar2(30), address2 varchar2(30),
city varchar2(15), state varchar2(15), pincode number(6),

remarks varch_2(60), bal_due number(lO,2), partpaY311 char(l));

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 5: Integrity Constraints

UNIQUE as a Table Constraint:

CREATE TABLE client master

(client_no varchar2(6), name varchar2(20),

addressl varchar2(30), address2 varchar2(30),

city varchar2(15), state varchar2(15), pincode number(6),
remarks varchar2(60), bal_due number(1O,2),
CONSTRAINT cnmn_ukey UNIQUE (client_no));

Default Value Concepts

At the time of cell creation a ‘default value’ can be assigned to it. When the user is loading a
‘record” with values and leaves this cell empty, the DBA will automatically load this cell with the
default value specified - The data type of the default value should match the data type of the
column. You can use the default clause to specify any default value you want.

CREATE TABLE sales_order

(s_order_no varchar2(6) PRIMARY KEY,

s _order_date date, client_no varchar2(6),

dely _Addr varchar2(25), salesman _no varchar2(6),
dely_type char(l) DEFAULT ‘F,

billed_yn char(1), dely_date date,

order_status varchar2(1 0))

Create sales_order table where:

Column Name Data Type Size Attribute
S_order no varchar2 6 Primary key
S_order date Date
Client_no varchar?2 6
Dely_Addr varchar2 25
Salesman_no varchar2 6
Dely_type char I Delivery: part (P)/Full (F) Default ‘F’
Billed_yn Char 1
Dely_date Date
Order_status varchar2 10
Foreign Key Concepts

Foreign keys represent relationships between tables. A foreign key is a Column (or a group of
columns) whose values-are derived from the primary key of the same or some other table.

The existence of a foreign key implies that the table with the foreign key is related to the -
primary key table from which the foreign-key is derived. A foreign key must have a corresponding
primary key value in the primary key table to have a meaning.

' Example: The s_order_no column is the primary key of table sales_order. In table
sales_order__details, s _order_no is a foreign key that references the s_order_.no values in table
sales order.

LOVELY PROFESSIONAL UNIVERSITY

Notes

75

www.manaraa.com

Database Management Systems/Managing Database

Notes The Foreign Key References constraint are as follows:

1. Rejects an INSERT or UPDATE of a value, if a corresponding value does not currently exist
in the primary key table

2. Rejects a DEL_TE, if it would invalidate a REFERENCES constrain
3. Must reference a PRIMARY KEY or UNIQUE columny(s) in primary key table

4. Will reference the PRIMARY KEY of the primary key table if no column or group of
columns is specified in the constraint

5. Must reference a table, not a view or cluster;

6. Requires that you own the primary key table, have REFERENCE privilege on it, or have
column-level REFERENCE privilege on the referenced colwnns in the primary key table;

7. Doesn't restrict how other constraints may reference the same tables;

8. Requires that the FOREIGN KEY column(s) and the CONSTRAINT column(s) have matching
data types;

9. May reference the same table named in the CREATE TABLE statement;

10. Must not reference the same column more than once (in a single constraint).

' Example: Create table sales_order _details with primary key as s_order_no and
product_no and foreign key as s_order_no referencing column s_order_no in the sales order
table.

FOREIGN KEY as a Column Constraint:

CREATE TABLE sales order details

('s_order_no varchar2(6) REFERENCES sales_order,

product_no varchar2(6),

qty _ordered number(8), qty - disp number(8), product_rate number(8,2),
PRIMARY KEY (s_order_no, product_no));

FOREIGN KEY as a Table Constraint:

CREATE TABLE sales order details

('s _order_no varchar2(6),

product_no varchar2(6),

qty_ordered number(8), qty_disp number(8),
product_rate number(8,2),

PRIMARY KEY (s_order_no, product_no),

FOREIGN KEY (s_order_no) REFERENCES sales_order);

CHECK Integrity Constraints

Use the CHECK constraint when you need to enforce integrity rules that can be evaluated based
on a logical expression. Never use CHECK constraints if the constraint can be defined using the
not null, primary key or foreign key constraint.

Following are a few examples of appropriate CHECK constraints:

1. a CHECK constraint on the client no column of the client master so that no client no value
starts with ‘C’.

76 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 5: Integrity Constraints

2. a CHECK constant on name column of the client master so that the name is entered in
upper case.
3. a CHECK constraint on the city column of the client_master so that only the cities

“BOMBAY”, “NEW DELHI “, “MAPRAS” and “CALCUTTA" are allowed.

CREATE TABLE client master

(client_no varchar2(6) CONSTRAINT ck_clientno

CHECK (client_no like ‘C%"),

name varchar2(20) CONSTRAINT ck_cname

CHECK (name = upper(name»,

address I varchar2(30), address2 varchar2(30),

city varchar2(15) CONSTRAINT ck _city

CHECK (city INCNEWDELHI’, ' BOMBAY’, “CALCUTTA’,'MADRAS)),

state varchar2(15), pin code number(6),

remarks varchar2(60), bal- due number(10,2));

When using CHECK constraints, consider the ANSI I ISO standard which states that a CHECK
constraint is violated only if the condition evaluates to False, True and unknown values do not

violate a check condition. Therefore, make sure that a CHECK constraint that you define actually
enforces the rule you need to enforce.

' Example: Consider the following CHECK constraint for emp table:
CHECK (sal > 0 or comm >=0)

At first glance, this rule may be interpreted as “do not allow a row in emp table unless the
employee’s salary is greater than 0 or the employee’s commission is greater than or equal to “0”.

05|

Notes If a row is inserted with a null salary and a negative commission, the row does not
violate the CHECK constraint because the entire check condition is evaluated as unknown.
In this particular case, you can account for such violations by placing not null integrity
constraint on both the sal and comm columns.

2

Task Explain primary key constraints.

5.2 Authorization

After installing PL/SQL Developer all users can use all PL/SQL Developer functionality, within
the limits of the system privileges and object privileges that are granted to the Oracle user that
is connected to the database.

' Example: If the Oracle user does not have the create user system privilege, the PL/SQL
Developer user can start the New user function in PL/SQL Developer, but will eventually get an
“ORA-01031, insufficient privileges” error message from Oracle.

LOVELY PROFESSIONAL UNIVERSITY

Notes

77

www.manaraa.com

Database Management Systems/Managing Database

Notes

Authorization - |I:| |£|

Grantees

|DBA]

RESOURCE X2

Privileges

Objects.Describe All 9
Ohjects.Properties All

Objects.QueryData All

Objects.View All

Ohjects ViewSpecAndBody All

| OK I Cancel Drop table...

You can explicitly authorize all relevant PL/SQL Developer functionality to specific Oracle
users and roles. In a development database you will allow all developers all functionality, in a

test database you will typically not allow a user to alter objects, and in a production database
you would typically disable all functions for most users that could alter the database or take up
too much resources and would affect performance.

By granting PL/SQL Developer privileges to roles you can customize authorization for specific
groups of people. You can make use of existing roles that implicitly map to a user group (such
as DBA and RESOURCE) or you can create roles specifically for PL/SQL Developer user groups.
To prevent all PL/SQL Developer users from accessing a specific database, you can simply not
grant the System.Logon privilege to any user or role.

5.3 DCL Commands

Data control language (DCL) refers to the subgroup of SQL statements that controls access to
database objects and data.

This sub-category of SQL statements is of particular interest to database administrators managing
database user groups, and user IDs. DCL statements are used at the database level to control who
can execute SQL statements, restrict what SQL statements users can execute, and to assign
authorities to users so that they can execute a pre-defined set of SQL statements. Although user
access to the database can also be administered at the operating system level or by using security
plugins, DCL statements provide the most direct method for granting and revoking user
privileges and authorities. Database administrators grant or revoke user privileges when a new
user is added, a user is removed, a user’s privileges are to be restricted or relaxed due to a change
in security policy, or when special situations warrant a user being granted new privileges to
execute a SQL statement.

78 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 5: Integrity Constraints

In general DCL statements begin with one of the following keywords: GRANT, or REVOKE.
There are different sub-categorizations of DCL statements based on the type of action to be
granted or revoked. For example there are DCL statements related to statements, packages, and
utilities. These statements generally all contain clauses referring to the name of a database
privilege or authority, the name of the database object associated with the privilege if there is
one, and the name of the user that will be modified. DCL statements can also be used to delegate
the authority to grant and revoke specific privileges to other users.

DCL statements can be executed from a variety of interactive and application interfaces although
they are most commonly executed in scripts or from DB2(R) tools that support SQL statement
execution.

For security reasons it is important that privilege management be used to minimize the number
of users that can modify the privileges in order to prevent data from being data accidentally or
maliciously modified, retrieved, or lost. It follows therefore that to retrieve, insert, update, or
delete data in a database users require particular authorities which should generally be restricted
to the smallest sub-set of database users possible.

For the specific authorities required to execute a DCL statement, refer to the specific SQL Reference
syntax topic for that statement.

GRANT

This command is used for gives access privileges to users for database. The syntax is:

GRANT dba to username;

REVOKE

This command is used for withdraws access privileges to users for database. The syntax is:

REVOKE permissions on tablename from username;

5.4 Embedded SQL

The SQL standard defines embeddings of SQL in a variety of programming languages, such as
Pascal, PL/I, Fortran, C, and Cobol. A language in which SQL queries are embedded is referred
to as a host language, and the SQL structures permitted in the host language constitute embedded

SQL.

Programs written in the host language can use the embedded SQL syntax to access and update
data stored in a database. This embedded form of SQL extends the programmer’s ability to
manipulate the database even further. In embedded SQL, all query processing is performed by
the database system. The result of the query is then made available to the program one tuple
(record) at a time.

An embedded SQL program must be processed by a special preprocessor prior to compilation.
Embedded SQL requests are replaced with host-language declarations and procedure calls that
allow run-time execution of the database accesses. Then the resulting program is compiled by
the host-language compiler. To identify embedded SQL requests to the preprocessor, we use the
EXEC SQL statement; it has the form:

EXEC SQL <embedded SQL statement > END-EXEC

The exact syntax for embedded SQL requests depends on the language in which SQL is embedded.
For instance, a semi-colon is used instead of END-EXEC when SQL is embedded in C or Pascal.

LOVELY PROFESSIONAL UNIVERSITY

Notes

79

www.manaraa.com

Database Management Systems/Managing Database

Notes Declaring Variables and Exceptions

We place the statement SQL INCLUDE in the program to identify the place where the preprocessor
should insert the special variables used for communication between the program and the database
system. Variables of the host language can be used within embedded SQL statements, but they
must be preceded by a colon (:) to distinguish them from SQL variables.

To write a relational query, we use the declare cursor statement. The result of the query is not yet
computed. Rather, the program must use the open arid fetch commands (discussed later in this
section) to obtain the result tuples.

Consider the banking schema. Assume that we have a host-language variable amount, and that
we wish to find the names and cities of residence of customers who have more than amount
dollars in any account. We can write this query as follows:

EXEC SQL

declare c cursor for

select customer-name, customer-city

from deposit, customer

where deposit.customer-name = customer.customer-name and
deposit.balance > : amount

END-EXEC

The variable c in the preceding expression is called a cursor for the query. We use this variable
to identify the query in the open statement, which causes the query to be evaluated, and in the
fetch statement, which causes the values of one tuple to be placed in host-language variables.

The open statement for our sample query is as follows:
EXEC SQL open c END-EXCE

This statement causes the database system to execute the query and to save the results within a
temporary relation. If the SQL query results in an error, the database system stores an error
diagnostic in the SQL communication-area (SQLCA) variables, whose declarations are inserted
by the SQL INCLUDE statement.

A series of fetch statements is executed to make tuples of the result available to the program. The
fetch statement requires one host-language variable for each attribute of the result relation. For
our example query, we need one variable to hold the customer-name value and another to hold
the customer-city value. Suppose that those variables are en and cc, respectively. A tuple of the
result relation is obtained by the statement:

EXEC SQL fetch c into : en, : cc END-EXEC

The program can then manipulate the variables en and cc using the feature of the host
programming language.

The close statement must be used to tell the database system to delete the temporary relation
that held the result of the query. For our example, this statement takes the form

EXEC SQL close c END-EXEC

80 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 5: Integrity Constraints

Embedded SQL expressions for database modification (update, insert, and delete) don’t return a
result. Thus, they are somewhat simpler to express. A database-modification request takes the
form

EXEC SQL < any valid update, insert, or delete> END-EXEC

Host-language variables, preceded by a colon, may appear in the SQL database modification
expression. If an error condition arises in the execution of the statement, a diagnostic is set in the
SQLCA.

2

Task Discuss the purpose of GRANT command in SQL

5.5 Dynamic SQL

The dynamic SQL component of SQL-92 allows programs to construct and submit SQL queries at
run time. In contrast, embedded SQL statements must be completely present at compile time,
and are compiled by the embedded SQL preprocessor. Using dynamic SQL, programs can create
SQL queries as strings at run time (perhaps based on input from the user), and can either have
them executed immediately, or have them prepared for subsequent use. Preparing a dynamic
SQL statement compiles it, and subsequent uses of the prepared statement use the compiled
version. The following is an example of the use of dynamic SQL from within a C program.

char * sqlprog = “update account set balance = balance * 1.05
where account-number = ?”

EXEC SQL prepare dynprog from : sqlprog;

char account [10] = “A-101";

EXEC SQL execute dynprog using : account;

The dynamic SQL program contains a ?, which is a place holder for a value that is provided when
the SQL program is executed.

These are two main commands, PREPARE and EXECUTE, which we illustrate through a simple
example:

char c_sqglstring[] = {“DELETE FROM Sailors WHERE rating>5"};
EXEC SQL PREPARE readytogo FROM : c_sqlstring;
EXEC SQL EXECUTE readytogo;

The first statement declares the C variable c_sqlstring and initializes its value to the string
representation of an SQL command. These second statement results in this string being parsed
and compiled as an SQL command, with the resulting executable bound to the SQL variable
readytogo. (Since readytogo is an SQL variable, just like a cursor name, it is not prefixed by a
colon.) The third statement executes the command.

5.6 Summary

o Database objects allow fields to be defined that are calculated by any specified method
(and not stored in the database).

o They allow referential integrity (the relationships between objects that must be maintained
(e.g. invoice master/detail) to be defined in a database-independent way, they allow a set

LOVELY PROFESSIONAL UNIVERSITY

Notes

81

www.manaraa.com

Database Management Systems/Managing Database

Notes of valid values to be defined for a field and verify field validation against that list
automatically, they allow serial number fields to be automatically assigned correct values,
and much more.

5.7 Keywords

Column Level Constraints: If the constraints are defined along with the column definition, it is
called as a column level constraint.

Foreign Key: Foreign keys represent relationships between tables.

Primary Key: A primary key is one or more columns in a table used to uniquely identify each
row in the table.

Table Level Constraints: If the data constraint attached to a specific cell in a table references the
contents of another cell in the table then the user will have to use table level constraints.

5.8 Self Assessment

Fill in the blanks:

L ensure that changes made to the database by authorized users do not
result in a loss of data consistency.

2. Setting a ... is appropriate when the actual value is unknown.

3. A multicolumn primary key is called accccceueueee. primary key.

4. The ., of the default value should match the data type of the column.

5. By grantingccccceeeee.. privileges to roles you can customize authorization for specific

groups of people.

6. e refers to the subgroup of SQL statements that controls access to database
objects and data.

7o e command is used for gives access privileges to users for database.

8. The exact syntax for ... requests depends on the language in which SQL is
embedded.

9. Aseriesofcccoveriiinne. is executed to make tuples of the result available to the program.

10. Embedded SQL expressions for database modification (update, insert, and delete)
......................... aresult.

5.9 Review Questions

Distinguish between primary key constraints and foreign key constraints.
What do you mean by NOT NULL concept in table creation? Explain

Explain authorization concept of database in detail.

L

If I want to search name "Amit Kumar" present in the table which one created by you.
What is the query to display "Amit Kumar"? Explain.

5. Create table sales_order _details with primary key as s_order_no and product_no and
foreign key as s_order_no referencing column s_order_no in the sales order table.

82 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 5: Integrity Constraints

10.

"DCL statements begin with one of the following keywords: GRANT, or REVOKE". Discuss
the reason behind this.

"Programs written in the host language can use the embedded SQL syntax to access and
update data stored in a database." Explain

"REVOKE permissions on tablename from username" discuss the use of this command.
CREATE TABLE sales_order

(s_order_no varchar2(6) PRIMARY KEY,

s _order_date date, client_no varchar2(6),

dely _Addr varchar2(25), salesman _no varchar2(6),
dely_type char(l) DEFAULT 'F',

billed_yn char(1), dely_date date,

order_status varchar2(1 0))

and also enter atleast two values in each column

What do you mean by default value?

Answers: Self Assessment

1. Integrity constraints 2. null value
3. composite 4. data type
5. PL/SQL Developer 6. Data control language (DCL)
7. GRANT 8. embedded SQL
9. fetch statements 10. don't return
5.10 Further Readings
Books C.J. Date, Introduction to Database Systems, Pearson Education.

i

Elmasri Navrate, Fundamentals of Database Systems, Pearson Education.
Martin Gruber, Understanding SQL, BPB Publication, New Delhi

Peter Rob & Carlos Coronel, Database Systems Design, Implementation and
Management, 7th Edition.

Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,
Tata McGraw Hill.

Silberschatz, Korth, Database System Concepts, 5th Edition, McGraw Hill.

Sllberschatz-Korth-Sudarshan, Database System Concepts, 4th Edition, Tata
McGraw Hill

Vai Occardi, Relational Database: Theory & Practice, BPB Publication, New Delhi

Online links ~ www.en.wikipedia.org

www.webopedia.com

www.web-source.net

LOVELY PROFESSIONAL UNIVERSITY

Notes

83

www.manaraa.com

Database Management Systems/Managing Database

Pawan Kumar, Lovely Professional University

Notes Unit 6: Relational Language and Database Design

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

CONTENTS
Objectives

Introduction

Relational Calculus

Tuple Relational Calculus

6.2.1 Syntax of TRC Queries

6.2.2 Semantics of TRC Queries

Domain Relational Calculus
Query-by-Example

Overview of Design Process
Entity-Relationship Model

Constraints

E-R Diagrams

ER Design Issues

6.9.1 Use of Entity Sets versus Attributes
6.9.2 Use of Entity Sets versus Relationship Sets
6.9.3 Binary versus n-ary Relationship Sets
6.9.4 Aggregation versus Ternary Relationships
Weak Entity Sets

Extended ER Features

6.11.1 Class Hierarchies

6.11.2 Aggregation

Summary

Keywords

Self Assessment

Review Questions

Further Readings

84

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 6: Relational Language and Database Design

Objectives

After studying this unit, you will be able to:

° Discuss relational calculus, tuple and domain relational calculus
) Explain entity relationship model

° Know the constraints

) Describe E-R diagrams and extended ER features
Introduction

Relational tables can be considered as sets. The rows of the tables can be considered as elements
of the set. Operations that can be performed on sets can be done on relational tables. Relational
Data operators are used to retrieve the required data from relational tables. Data is retrieved
using queries and the queries are formulated using various data operators.

To be able to use a database to store data, it should be designed in an efficient manner. The first
step in designing a database is data modeling. Data modeling enables a database designer to
create a model that represents the way in which information is likely to be organized in the
database. There are two major methodologies used to create a data model: the Entity-Relationship
(ER) approach and the Object Model. This unit mainly focuses on data modeling using the
Entity-Relationship approach. The basic techniques described here are applicable to the
development of relational database applications.

6.1 Relational Calculus

Relational calculus is an alternative to relational algebra. In contrast to the algebra, which is
procedural, the calculus is nonprocedural, or declarative, in that it allows us to describe the set
of answers without being explicit about how they should be computed. Relational calculus has
had a bid influence on the design of commercial query languages such as SQL and, especially,
Query-by-Example (QBE).

The variant of the calculus that we present in detail is called the tuple relational calculus (TRC),
variables in TRC take on tuples as values. In another variant, called the domain relational
calculus (DRC), the variables range over field values. TRC has had more of an influence on SQL,
while DRC has strongly influenced QBE.

6.2 Tuple Relational Calculus

A tuple variable is a variable that takes on tuples of a particular relation schema as values. That
is, every value assigned to a given tuple variable has the same number and type of _elds. A tuple
relational calculus query has the form {T | p (T)}, where T is a tuple variable and p(T) denotes a
formula that describes T; we will shortly define formulas and queries rigorously. The result of
this query is the set of all tuples t for which the formula p(T) evaluates to true with T = t. The
language for writing formulas p(T) is thus at the heart of TRC and is essentially a simple subset
of first-order logic. As a simple example, consider the following query.

' Example: Find all sailors with a rating above 7.

{S|S & Sailors /\ S. rating > 7}

LOVELY PROFESSIONAL UNIVERSITY

Notes

85

www.manaraa.com

Database Management Systems/Managing Database

86

Notes

When this query is evaluated on an instance of the Sailors relation, the tuple variable S is
instantiated successively with each tuple, and the test S.rating>7 is applied. The answer contains
those instances of S that pass this test. On instance S3 of Sailors, the answer contains Sailors
tuples with sid 31, 32, 58, 71, and 74.

6.2.1 Syntax of TRC Queries

We now define these concepts formally, beginning with the notion of a formula. Let Rel be a
relation name, R and S be tuple variables, a an attribute of R, and b an attribute of S. Let op
denote an operator in the set {<, >, =, <, >, #}. An atomic formula is one of the following;:

1. R eRel
2. R.aopSb
3. R.a op constant, or constant op R.a

A formula is recursively defined to be one of the following, where p and q are themselves
formula, and p (R) denotes a formula in which the variable R appears:

1. Any atomic formula

2. -ppaqPpPvqoOrp=gq

3. I R(p(R), where R is a tuple variable
4. v R(p(R), where R is a tupe variable

In the last two clauses above, the quantifiers 3 and V are said to bind the variable R. A variable
is said to be free in a formula or subformula (a formula contained in a larger formula) if the (sub)
formula does not contain an occurrence of a quantifier that binds it.

We observe that every variable in a TRC formula appears in a subformula that is atomic, and
every relation schema specifies a domain for each field, this observation ensures that each
variable in a TRC formula has a well-defined domain from which values for the variable are
drawn. That is, each variable has a well-defined type, in the programming language sense.
Informally, an atomic formula R 2 Rel gives R the type of tuples in Rel, and comparisons such as
R.a op S.b and R.a op constant induce type restrictions on the field R.a. If a variable R does not
appear in an atomic formula of the form R 2 Rel (i.e., it appears only in atomic formulas that are
comparisons), we will follow the convention that the type of R is a tuple whose fields include all
(and only) fields of R that appear in the formula.

We will not define types of variables formally, but the type of a variable should be clear in most
cases, and the important point to note is that comparisons of values having different types
should always fail. (In discussions of relational calculus, the simplifying assumption is often
made that there is a single domain of constants and that this is the domain associated with each
field of each relation.)

A TRC query is defined to be expression of of the form {T | p(T)}, where T is the only free
variable in the formula p.

2

Task Write tuple relational calculus syntax.

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 6: Relational Language and Database Design

6.2.2 Semantics of TRC Queries

What does a TRC query mean? More precisely, what is the set of answer tuples for a given TRC
query? The answer to a TRC query {T | p(T)}, as we noted earlier, is the set of all tuples t for
which the formula p(T) evaluates to true with variable T assigned the tuple value t. To complete
this definition, we must state which assignments of tuple values to the free variables in a
formula make the formula evaluate to true.

A query is evaluated on a given instance of the database. Let each free variable in a formula F be
bound to a tuple value. For the given assignment of tuples to variables, with respect to the given
database instance, F evaluates to (or simply ‘is’) true if one of the following holds:

1. Fisan atomic formula R € Rel, and R is assigned a tuple in the instance of relation Rel.

2. Fis a comparison R.a op S.b, R.a op constant, or constant op R.a, and the tuples assigned to
R and S have field values R.a and S.b that make the comparison true.

3. F is of the form -p and q is not true, or of the form p A g, and both p and q are true, or of the
form p v q, and one of them is true, or of the form p = q and q is true whenever p is true.

4. Fis the form 3 R(p(R)), and there is some assignment of tuples to the free variables in p(R),
including the variable R, that makes the formula p(R) true.

5. Fistheform v R(p(R)), and there is some assignment of tuples to the free variables in p(R)
that makes the formula p(R) true no matter what tuple is assigned to R.

6.3 Domain Relational Calculus

A domain variable is a variable that ranges over the values in the domain of some attribute (e.g.,
the variable can be assigned an integer if it appears in an attribute whose domain is the set of
intergers). A DRC query has the form {<x,, x,,, X > | p (<X, X,,, X >)}, where each x, is
either a domain variable or a constant and p (<x,, x,,, X >)} denotes a DRC formula whose
only free variables are the variables among the x,, 1 <i < n. The result of this query is the set of
all tuples <x,, x,,, x,> for which the formula evaluates to true.

A DRC formula is defined in a manner that is very similar to the definition of a TRC formula.
The main difference is that the variables are now domain variables. Let op denote an operator in
the set {<,>,=, <, >, #}and let X and Y be domain variables.

An atomic formula in DRC is one of the following:

1. <X,, Xy - . .., X,> € Rel, where Rel is a relation with n attributes, each x, 1 <i< n s either a
variable or a constant.

2. XopY
3. X op constant, or constant op X

A formula is recursively defined to one of the following, where p and q are themselves formulas,
and p(X) denotes a formula in which the variable X appears:

1. Any atomic formula
2. PPAGPVGOrp=4q
3. 3 X(p(X), where X is a domain variable

4. V X(p(X), where X is a domain variable

LOVELY PROFESSIONAL UNIVERSITY

Notes

87

www.manaraa.com

Database Management Systems/Managing Database

88

Notes

6.4 Query-by-Example

Query-by-Example (QBE) is another language for querying (and, like SQL, for creating and
modifying) relational data. It is different from SQL, and from most other database query languages,
in having a graphical user interface that allows users to write queries by creating example tables
on the screen. A user needs minimal information to get started and the whole language contains
relatively few concepts. QBE is especially suited for queries that are not too complex and can be
expressed in terms of a few tables.

A user writes queries by creating example tables. QBE uses domain variables, as in the DRC, to
create example tables. The domain of a variable is determined by the column in which it appears,
and variable symbols are prefixed with underscore (_) to distinguish them from constants.
Constants, including strings, appear unquoted, in contrast to SQL. The fields that should appear
in the answer are specified by using the command P., which stands for print. The fields containing
this command are analogous to the target-list in the SELECT clause of an SQL query.

This unit introduce QBE through example queries involving just one relation. To print the
names and ages of all sailors, we would create the following example table:

Sailor sid sname rating age

P._N P._A

A variable that appears only once can be omitted; QBE supplies a unique new name internally.
Thus the previous query could also be written by omitting the variables N and A, leaving just P.
in the sname and age columns. The query corresponds to the following DRC query, obtained
from the QBE query by introducing existentially quantified domain variables for each field.

{(N,A) | 3I,T({I,N,T,A) € Sailors)}

A large class of QBE queries can be translated to DRC in a direct manner. (Of course, queries
containing features such as aggregate operators cannot be expressed in DRC.) This unit shall
present DRC versions of several QBE queries. Although we will not define the translation from
QBE to DRC formally, the idea should be clear from the examples; intuitively, there is a term in
the DRC query for each row in the QBE query, and the terms are connected using”.

A convenient shorthand notation is that if we want to print all fields in some relation, we can
place P. under the name of the relation. This notation is like the SELECT * convention in SQL.
It is equivalent to placing a P. in every field:

Sailor sid sname rating age

P.

Selections are expressed by placing a constant in some field:

Sailor sid sname rating age

P. 10

Placing a constant, say 10, in a column is the same as placing the condition =10. This query is very
similar in form to the equivalent DRC query

{{I, N,10,A) | (I,N,10, A) € Sailors}

We can use other comparison operations (<, >,<=,>=, =) as well.

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 6: Relational Language and Database Design

Example: We could say < 10 to retrieve sailors with a rating less than 10 or say —10 to
retrieve sailors whose rating is not equal to 10. The expression —10 in an attribute column is the
same as _= 10. As we will see shortly, = under the relation name denotes (a limited form of) =3
in the relational calculus sense.

6.5 Overview of Design Process

Our primary focus is the design of the database. The database design process can be divided into
six steps:

Requirements Analysis

The very first step in designing a database application is to understand what data is to be stored
in the database, what applications must be built on the database, and what operations must be
performed on the database. In other words, we must find out what the users want from the
database. This process involves discussions with user groups, a study of the current operating
environment, how it is expected to change an analysis of any available documentation on
existing applications and so on.

Conceptual Database Design

The information gathered in the requirement analysis step is used to develop a high-level
description of the data to be stored in the database, along with the conditions known to hold this
data. The goal is to create a description of the data that matches both —how users and developers
think of the data (and the people and processes to be represented in the data). This facilitates
discussion among all the people involved in the design process i.e., developers and as well as
users who have no technical background. In simple words, the conceptual database design phase
is used in drawing ER model.

Logical Database Design

We must implement our database design and convert the conceptual database design into a
database schema (a description of data) in the data model (a collection of high-level data description
constructs that hide many low-level storage details) of the DBMS. We will consider only relational
DBMSs, and therefore, the task in the logical design step is to convert the conceptual database
design in the form of E-R Schema (Entity-Relationship Schema) into a relational database schema.

Schema Refinement

The fourth step in database design is to analyze the collection, of relations (tables) in our
relational database schema to identify future problems, and to refine (clear) it.

Physical Database Design

This step may simply involve building indexes on some tables and clustering some tables, or it
may involve redesign of parts of the database schema obtained from the earlier design steps.

LOVELY PROFESSIONAL UNIVERSITY

Notes

89

www.manaraa.com

Database Management Systems/Managing Database

Notes Application and Security Design

Any software project that involves a DBMS must consider applications that involve processes
and identify the entities.

Example: Users, user groups, departments, etc. We must describe the role of each entity
in every process. As a security design, for each role, we must identify the parts of the database
that must be accessible and the parts of the database that must not be accessible and we must take
steps to ensure that these access rules are enforced. In general, our division of the design process
into six steps are repeated until the design is satisfactorily known as tuning phase.

6.6 Entity-Relationship Model

The entity-relationship (ER) data model allows us to describe the data involved in real-world
enterprise in terms of objects (entities) and their relationships, and is widely used to develop an
initial database design.

The ER model is important for its role in database design. It provides useful concepts that allows
to change the detailed and informal description of what users want to a precise and formal
description that can be implemented in a DBMS. Within the overall design process, the ER
model is used in a phase called Conceptual database design.

Even though the ER model describes the physical database model, it is basically useful in the
design and communication of the logical database model,

The overall logical structure of a database can be expressed graphically by an E-R diagram as
follows:

Figure 6.1: Entity-relationship Diagram
< Attrl >< Attrl4 >< Attrg >< Attrg; >~A<Atl‘l‘21 >< Attrog >

ENTITY1 RELATIONSHIP ENTITY2

The E-R diagram is built up from the following components:
1. Rectangles: Which represent entity sets.

2. Diamonds: Which represent relationships among entity sets, which are connected to the
rectangles by lines.

3. Ellipses: Which represent attributes, and are connected to the entities or relationship by
lines.

4. Lines: Which link attributes to entity sets and entity sets to relationships.

The rectangles, diamonds and ellipses are labelled with the entity, relationships and attributes,
respectively, that it represents.

90 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 6: Relational Language and Database Design

Figure 6.2: E-R Diagram

' ename ' (Since) dname
eno ‘ salary ’ did

Thus, an entity (rectangles) is a “thing” or “object” in the real world that is distinguishable from
other objects, example, each employee is an entity and each department is an entity.

A relationship (diamond) is an association (connection) between different entities.

'i Example: Works-in a department, thus here, works-in is a relationship between two
different entities.

At last, each fields, i.e., employee, department and works-in has their own details, which are
represented by attributes (ellipses), i.e., employee details are ename (employee_name), eno
(employee_number) and salary, and, department details are dname (department_name), dno
(department_number) and budget, and, works-in details are since (the starting date) of an
employee in a department.

2

Task Which tool you used for your DBMS security?

6.7 Constraints

Consider the works-in relationship shown in the following figure.

Figure 6.3

ename ’ Since ’ dname '
€no salary ’ did

Employees Works -in Departmemt

LOVELY PROFESSIONAL UNIVERSITY

Notes

91

www.manaraa.com

Database Management Systems/Managing Database

Notes Here, we can note that, one employee can work in many departments, or, one department can
have many employees. This can also be illustrated with the following Figure 6.4:

Figure 6.4

123 - 22 -3666

231 - 31 5368

131 - 24 -3650

223 -32-6316

Here, employee 231-31-5368 has worked in Department 51 since, 3/3/93 and in Department 56
since 2/2/92. Thus one department can have many employees.

But, if we want to have only one employee in a department, then it is an example of a Key
Constraint.

' Example: Consider another relationship Manages between employees and department
entities as in the following figure.

Figure 6.5
: ename : : dname :
— < o) &
Employees Manages Department

Here, each department can have only one manager. The restriction that each department can
have only one manager is an example is an example of a Key Constraints This restriction is
indicated in the above ER diagram by using an arrow from department to manages, such that a
department can have only one manager. Therefore, as there is no arrow from employees entity
to manages relationship, we can say that, many employees or one employee can manage
department. But, as there is an arrow from department entity to manages relationship, we say
that, the departments is managed by only one employee or there is only one manager for
department(s), indicating many-to-one relationship.

Participation Constraint

The key constraint and its figure in the previous unit on manages relationship tells us that every
department has one manager. This requirement is an example of a participation constraints i.e.,

92 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 6: Relational Language and Database Design

the participation of the entity Department in the relationship manages is said to be total. If the Notes
participation is not total, then the participation is said to be partial. A partial participation

example is the participation of the entity set Employees in the relationship Manages, thus every

employee cannot be a manager of a department.

6.8 E-R Diagrams

Now we are in a position to write the ER diagram for the Company database which was introduced
in the beginning of this unit. The readers are strictly advised to follow the steps shown in this
unit to design an ER diagram for any chosen problem.

Step 1: Identify the Strong and Weak Entity Sets

After careful analysis of the problem we come to a conclusion that there are four possible entity
sets as shown below:

1. Employees Strong Entity Set
2 Departments Strong Entity Set
3. Projects Strong Entity Set
4 Dependents Weak Entity Set

Step 2: Identify the Relevant Attributes
The next step is to get all the attributes that are most applicable for each entity set. Do this work

by considering each entity set in mind and also the type of attributes. Next job is to pick the
primary key for strong entity sets and partial key for weak entity sets.

' Example: Following are the attributes:

1 Employees SSN. Name, Addr, DateOfBirth, Sex, Salary
2 Departments DNo. DName, DLocation

3. Projects PNo. PName, PLocation

4 Dependents (weak) DepName, DateOf Birth, Sex, Relationship

The underlined attributes are the primary keys and DepName is the partial key of Dependents.
Also, DLocation may be treated as a multivalued attribute.

Step 3: Identify the Relationship Sets
In this step we need to find all the meaningful relationship sets among possible entity sets. This

step is very tricky, as redundant relationships may lead to complicated design and in turn a bad
implementation.

' Example: Let us show below what the possible relationship sets are:

1 Employees and Departments WorksFor
2 Employees and Departments Manages
3. Departments and Projects Controls
4 Projects and Employees WorksOn
LOVELY PROFESSIONAL UNIVERSITY 93

www.manaraa.com

Database Management Systems/Managing Database

Notes 5. Dependents and Employees Has
6. Employees and Employees Supervises

Some problems may not have recursive relationship sets but some do have. In fact, our Company
database has one such relationship set called Supervises. You can complete this step adding
possible descriptive attributes of the relationship sets (Manages has StartDate and WorksOn has
Hours).

Step 4: Identify the Cardinality Ratio and Participation Constraints

This step is relatively a simple one. Simply apply the business rules and your common sense. So,
we write the structural constraints for our example as follows:

1. WorksFor N: 1 Total on either side

2 Manages 1: 1 Total on Employees and Partial on Departments side
3 Controls 1: N Total on either side

4. WorksOn M: N Total on either side

5 Has 1: M Total on Dependents and Partial on Employees

Step 5: Identify the IS-A and Has-A Relationship Sets

The last step is to look for “is-a” and “has-a” relationships sets for the given problem. As far as
the Company database is concerned, there are no generalization and aggregation relationships
in the Company database.

The complete single ER diagram by combining all the above five steps is shown in figure 6.6.

Figure 6.6

<
7N 1 /

/@
W Departments

Employees

1
1 N

Controls
N
Depandants Projects

. (Lo

D @
— v
P No
Sex
94 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 6: Relational Language and Database Design

2

Task Discuss Entity-Diagram relationship.

6.9 ER Design Issues

The following are the ER design issues:

1 Use entry sets attributes

2 Use of Entity sets or relationship sets

3. Binary versus entry relationship sets

4 Aggregation versus ternary relationship.

6.9.1 Use of Entity Sets versus Attributes

Consider the entity set employee with attributes employee-name and telephone-number. It can
easily be argued that a telephone is an entity in its own right with attributes telephone-number
and location (the office where the telephone is located). If we take this point of view, the
employee entity set must be redefined as follows:

1. The employee entity set with attribute employee-name.
2. The telephone entity set with attributes telephone-number and location.
3. The relationship set imp-telephone, which denotes the association between employees

and the telephones that they have.

The first difference between these two definitions of an employee is that, every employee has
precisely one telephone number associated with him. In the second case, however, the definition
states that employees may have several telephone numbers (including zero) associated with
them.

6.9.2 Use of Entity Sets versus Relationship Sets

In order to clarify whether an object is best expressed by an entity set or a relationship set,
assume that a bank loan is modeled as an entity. An alternative is to model aloan as a relationship
between customers and branches, with loan-number and amount as descriptive attributes. Each
loan is represented by a relationship between a customer and a branch.

If every loan is held by exactly one customer and customer is associated with exactly one branch,
the design where a loan is represented as a relationship, maybe satisfactory. However, with this
design, we cannot represent conveniently a situation in which several customers hold a loan
jointly. We must define a separate relationship for each holder of the joint loan. Then, we must
replicate the values for the descriptive attributes loan-number and amount in each such
relationship. Each such relationship must have the same value for the descriptive attributes
loan-number and amount. Two problems arise as a result of the replication:

1. The data are stored multiple times, wasting storage space; and

2. Updates potentially leaves the date in an inconsistent state, where the values differ in two
relationships for attributes that are supposed to have the same value.

LOVELY PROFESSIONAL UNIVERSITY

Notes

95

www.manaraa.com

Database Management Systems/Managing Database

Notes 6.9.3 Binary versus n-ary Relationship Sets

It is always possible to replace a no binary (n-ary, for n > 2) relationship set by a number of
distinct binary relationship sets. For simplicity, consider the abstract ternary (n = 3) relationship
set R, relating entity sets A, B and C. We replace the relationship set R by an entity set E, and
create three relationship sets:

1. R,, relating E and A
2. R, relating E and B
3. R, relating E and C

If the relationship set R had any attributes, these are assigned to entity set E; otherwise, a special
identifying attribute is created for E (since every entity set must have at least one attribute to
distinguish members of the set). For each relationship (a., b, c.) in the relationship set R, we
create a new entity e. in the entity set E. Then, in each of the three new relationship sets, we insert
a relationship as follows

1. (ei, ai) in R,
2. (ei, bi) in R,
3. (ei, ci) in R,

We can generalize this process in a straightforward manner n-ary relationship sets. Thus,
conceptually, we can restrict the E-R model to include only binary relationship sets.

6.9.4 Aggregation versus Ternary Relationships

The choice between using aggregation OT a ternary relationship is mainly determined by the
existence of relationship that relates a relationship set to an entity set (or second relationship
set). The choice may also be guided by certain integrity constraints to we want to express.

Consider the constraint that each sponsorship (of a project by a department) be monitored by at
most one employee. We cannot express this constraint in terms of the Sponsors2 relationship
set. Also we can express the constraint by drawing an arrow from the aggregated relationship.
Sponsors to the relationship Monitors. Thus, the presence of such a constraint serves as another
reason for using aggregation rather than a ternary relationship set.

Figure 6.7: Using a Ternary Relationship Instead of Aggregation

cname

Employess
Strarted - on dname

GO G=D | GO |G

Projects

Sponsors Departments

96 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 6: Relational Language and Database Design

6.10 Weak Entity Sets

An entity set attributes that does not have a primary key within them, is termed as a weak entity
set. As an example, consider the entity set Payment, which has the three attributes: payment -
number, payment - date and payment - amount, illustrated with the following E-R diagram:

Figure 6.8

Payment-date

Loan Payments
@ ym

loan-no amount

A weak entity set Payment is indicated in E-R diagram by a doubly outlined box, because each
payment entity is district, payments for different loans may share the same payment number.
Thus, this entity set does not have a primary key, it is a weak entity set.

In the above figure, the weak entity set Payment is dependent on the strong entity set Loan (An
entity set that has a primary key is termed as a strong entity set), via the relationship loan-
payment identified by a double outlined diamond.

The below figure illustrates the use of double lines to indicate total participation. The
participation of the weak entity set Payment in the relationship loan-payment is total; it means
that every payment must be related via loan-payment to some account. The arrow from loan-
payment to loan indicates that each payment is for a single loan.

The discriminator of a weak entity set is underlined with a dashed, rather than a solid line. The
discriminator of the weak entity set Payment is the attribute payment-number, which is formed
by the primary key loan-number of the strong entity set Loan on which the weak entity set is
dependent. That is, in this case of the weak entity set payment, its temporary primary key
(discriminator) is {loan-number, payment-number}, where loan -number identifies the dominant
entity of a Payment, and payment - number distinguishes payment entities within the same
loan.

An entity set that has a primary key is termed as a strong entity set.

' Example: The entity set loan in the above figure is a strong entity set with its primary
key loan-number.

6.11 Extended ER Features

6.11.1 Class Hierarchies

To classify the entities in an entity set into subclass entity is known as class hierarchies. Example,
we might want to classify Employees entity set into subclass entities Hourly-Emps entity set

LOVELY PROFESSIONAL UNIVERSITY

Notes

97

www.manaraa.com

Database Management Systems/Managing Database

98

Notes

and Contract-Emps entity set to distinguish the basis on which they are paid. Then the class
hierarchy is illustrated as follows:

Figure 6.9: Class Hierarchy

(ename)
eno < salary)

Employee

(hours - worked) (contractid)
ISA
hourly -wages Hourly Emps Contract - Emps

This class hierarchy illustrates the inheritance concept. Where, the subclass attributes ISA (read
as : is a) super class attributes; indicating the “is a” relationship (inheritance concept).Therefore,
the attributes defined for a Hourly-Emps entity set are the attributes of Hourly-Emps plus
attributes of Employees (because subclass can have superclass properties). Likewise the attributes
defined for a Contract-Emps entity set are the attributes of Contract-Emps plus attributes of
Employees.

Class Hierarchy based on Sub-super Set

1.

Specialization: Specialization is the process of identifying subsets (subclasses) of an entity
set (superclass) that share some special distinguishable characteristic. Here, the superclass
(Employee) is defined first, then the subclasses (Hourly-Emps, Contract-Emps, etc.) are
defined next.

In short, Employees is specialized into subclasses.

Generalization: Generalization is the process of identifying (defining) some generalized
(common) characteristics of a collection of (two or more) entity sets and creating a new
entity set that contains (possesses) these common characteristics. Here, the subclasses
(Hourly-Emps, Contract-Emps, etc.) are defined first, then the Superclass (Employee) is
defined, next.

In shortly, Hourly-Emps and Contract-Emps are generalized by Employees.

Class Hierarchy based on Constraints

1.

Overlap constraints: Overlap constraints determine whether two subclasses are allowed
to contain the same entity.

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 6: Relational Language and Database Design

' Example: Can Akbar be both an Hourly-Emps entity and a Contract-Emps entity?
The answer is, No.

Other example, can Akbar be both a Contract-Emps entity and a Senior-Emps entity (among
them)?

The answer is, Yes. Thus, this is a specialisation hierarchy property. We denote this by
writing “Contract-Emps OVERLAPS Senior-Emps”.

2. Covering Constraints: Covering constraints determine whether the entities in the
subclasses collectively include all entities in the superclass.

' Example: Should every Employee be a Hourly-Emps or .Contract-Emps?
The Answer is, No. He can be a Daily-Emps.

Other example, should every Motor-vehicle (superclass) be a Bike (subclass) or a Car
(subclass)?

The Answer is YES.

Thus generalization hierarchies property is that every instance of a superclass is an instance
of a subclass.

We denote this by writing “ Bikes and Cars COVER Motor-vehicles”.
6.11.2 Aggregation

Aggregation allows us to indicate that a relationship set (identified through a dashed box)
participates in another relationship sets. That is, a relationship set in an association between
entity sets. Sometimes we have to model a relationship between a collection of entities and
relationships.

Example: Suppose that we have an entity set called Project and that each Project entity is
sponsored by one or more departments. Thus, the sponsors relationship set captures this
information but, a department that sponsors a project, might assign employees to monitor the
sponsorship. Therefore, Monitors should be a relationship set that associates a sponsors
relationship (rather than a Project or Department entity) with an Employees entity. However,
again we have to define relationships to associate two or more entities.

Use of Aggregation

We use an aggregation, when we need to express a relationship among relationships. Thus,
there are really two distinct relationships, Sponsors and Monitors, each with its own attributes.

'i Example: The Monitors relationship has an attribute until that records the ending date
until when the employee is appointed as the sponsorship monitoring. Compare, this attribute
with the attribute since of Sponsors, which is the starting date when the sponsorship took effect.

2
Task Specialisation and generalisation are two important concepts of EER. What
is your opinion?

LOVELY PROFESSIONAL UNIVERSITY

Notes

929

www.manaraa.com

Database Management Systems/Managing Database

100

Notes

To enable the readers for a better understanding of ER diagram we shall present few examples
in this study. The reader should go through these examples carefully for a better and easier way
of writing ER diagrams.

Case Sudy Insurance Policy Management System

onsider a popular and common problem in the today’s world: Insurance Policy
Management System. The Software Requirements Specifications (SRS) for this
problem can be stated as follows:

=

The Insurance Company has many branches with branchid, branch name, address or
location, phone numbers, fax, etc.

N

In every branch there are different types of staff working. For example, there is a
branch manager, field officers, development personnel, secretarial assistants, etc. It
is necessary to keep track of staffed, staff name, address, position, salary, date of
birth, etc.

3. Apart from the regular employees there are part-time staff called insurance agents
who work on commission basis.

4. The Insurance Company must store the details of policy holders: policy holder’s
name, policy number, address, tenure, maturity amount, premium amount, etc. It is
mandatory to mention the nominees in every policy.

With our knowledge of ER diagram studied so far, the various entity sets and the attributes
can be identified as follows:

Step-1 and Step-2: Entity Sets and Attributes

1 Branches BranchID, BranchName, Addr, Phone

2. Staff StaffID, StaffName, Addr

3. Customers PolicyNo, Name, Addr, Age, Phone

4. Policy (weak) PolicyName, Tenure, MatAmount, PremAmount, Bonus
Sub Entity Sets of Staff

1 Managers Exp, Qualification

2. DevOfficers Qualification

3. SectAssts TypingSpeed

4. FullTime Salary, Position

5. Agents Type, Comm

Policy is a weak entity, because without a customer or policy holder the insurance policy
doesn’t exist. Also, the entity set Policy does not have primary key, but only partial
key (PolicyName). The name of the policy may be as follows: Endowment, Moneyback,
Medical, etc.

Figure depicts the ER Diagram for Insurance Policy management with all the constraints

incorporated.

Contd...

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 6: Relational Language and Database Design

Figure 1: ER Diagram of COMPANY Database

& @ =,
@ PolicyName

Customers 1 Hold " Policy

Bonus

StaffID 1

1
Staff 1. Branches

Addr

Managers | | SectAssts | | DevOfficers | | FullTime || Agents |

Step-3: Relationship Sets

As per the requirements as stated already, the following relationship sets may be identified:
1. WorksFor Staff and Branches N:1 Total on either side

2 Interacts Staff and Customers 1:N Total on either side

3 Hold Customers and Policy 1: N Total on either side

4. Staff (Managers, SectAssts, DevOfficers) IS-A Relationship

5 Staff (FullTime, Agents) IS-A Relationship

6.12 Summary

Relational algebra is a procedural language. It provides a collection of operations to manipulate
relations. It supports the notion of a query which is a request to retrieve information from a
database. The relational algebra data operations and their corresponding operators are:

Basic Operations:

Selection Select Operator (o)
Projection Project Operator (1)
Cross-product Cartesian product (x)
Union Operator (U)

Set Difference Difference Operator (-)

LOVELY PROFESSIONAL UNIVERSITY

Notes

101

www.manaraa.com

Database Management Systems/Managing Database

Notes Additional Operations:
Intersection Intersect Operator ()
Join Join Operator (>«)
Division Division operator (+)
Rename Rename operator (p)

Here, selection, projection, rename are unary operators and other operators are binary.

6.13 Keywords

Binary operations: Operations which operate on two relations.

ER model: The entity-relationship (ER) data model allows us to describe the data involved in
real-world enterprise in terms of objects (entities) and their relationships, and is widely used to
develop an initial database design.

Relational algebra: The Relational Algebra which is an algebraic notation, where queries are
expressed by applying specialized operators to the relations.

Relational calculus: The Relational Calculus which is a logical notation, where queries are
expressed by formulating some logical restrictions that the tuples in the answer must satisfy.

Unary operation: Operations which operates on only one relation.

6.14 Self Assessment

Choose the appropriate answer:
1. Relational calculus is an alternative to:
(@) Relational algebra
(b) Relational valuation
(¢ Related query
(d) Relational calculation
2. QBE stands for
(@) Quick-by-Example
(b) Query-by-Example
(¢ Queue-by-Example
(d) Query-by-Expansion
Fill in the blanks:

3. A is a variable that takes on tuples of a particular relation schema as
values.
4. A formula is defined in a manner that is very similar to the definition of a

TRC formula.

5. The ER model is important for its role incccccccocvununee.
6. represent entity sets.
102 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 6: Relational Language and Database Design

10.

An entity set attributes that does not have a primary key within them, is termed as a

.......................... determine whether two subclasses are allowed to contain the same entity.

............................ determine whether the entities in the subclasses collectively include all
entities in the superclass.

.............................. allows us to indicate that a relationship set participates in another
relationship sets.

6.15 Review Questions

Amazon.com has decided to reorganize its database. Information about users, books and
sales are stored. Amazon stores as much information as possible on user activity, in order
to analyze and improve its site. Below are few requirements:

(@) Awuserhasauniqueid, name, password and a single email address. Amazon contacts
users periodically by email, so it is important to know whether a user’s email has
been bouncing back messages and whether the user is willing to be spammed.

(b) The last date of a user’s visit is stored, so that Amazon can display to the user a list
of items that are new to the site since his last visit.

(c) Books have an ISDN number, title, author’s name, publisher’s name and cost.

(d) For each sale, Amazon stores the date of sale, the items bought, the customer (that
has to be a user), his/her address (street, number, city, state, country, zipcode),
telephone number, and credit-card number.

(e) Users who have bought at least one book, can place comments about every book
(although it is not a book that he has bought at Amazon), by giving a rate to the
book from 1 to 10.

(f) Amazon stores, for each comment, the content of the comment and the percentage of
users who were helped by this comment.

(8) Abook can be on a ‘wish-list” of a user. This is a book that the user would like to buy
at Amazon. Books from a wish-list can be bought for the user by himself, or by a
friend. The friend has also to be a user of Amazon. Amazon wants to keep track of
whether books on a wish-list were bought, and by whom they were bought.

Draw an entity relationship diagram to model the information described above. Remember
to put constraints, key attributes, etc. If you use the ISA relationship, state any covering
and overlap constraints that hold. Make any necessary and logical assumptions. State any
such assumptions clearly.

A Bank wants to computerize all of its transactions. It offers the following account types:
Savings Bank (SB), Recurring Deposit (RD), Fixed Deposit (FD)

The Bank also wishes to keep track of loans given to the customers. Identify the entities
and its attributes with all possible relationships. Write the ER diagram and state clearly
the assumptions that you make. The following assumptions may be considered:

(@) A customer can have only one type of account.

(b) Joint accounts are not allowed. Loans can be taken only when the customer has at
least one of the account types.

LOVELY PROFESSIONAL UNIVERSITY

Notes

103

www.manaraa.com

Database Management Systems/Managing Database

Notes 3. Use an Entity-Relationship diagram to depict the information needs of a small computer
business firm:

(@) The employees of the company assemble different types of computers. For each
employee a record is kept of his employee no., name, address, phone no., job title,
and salary.

(b) Arecord is also kept of each of the machines model, specs and name, and quantity on
hand.

(c) Each machine consists of a number of parts. An inventory must be kept of the parts
in stock. For each part a record is kept of its name, price, and quantity on hand.

(d) These parts are ordered from various suppliers. A record must be kept of the
suppliers name, address, and phone number.

(¢) The assembled computers are sold to various customers. A record is kept of the
customers name, address, and phone number. Some of these customers are credit
customers and for these customers a record is kept of their credit limit.

4. Why are entity integrity and referential integrity important in a database?

5. Suppose that you are using the database composed of the two tables shown in table below:

Table name: DIRECTOR

DIR_NUM | DIR_LNAME | DIR_DOB

b+ i Broadway 12-Jan-65
101 Hollywoody 18-Nov-53

+ 102 Goofy 21-Jun-62

Table name: PLAY

PLAY _CODE PLAY _NAME DiR_NUM
b Cat On a Cold, Bare Roof 102
1002 Hold the Mayo, Pass the Bread 101
1003 | Never Promised You Coffee 102
1004 Silly Putty Goes To Washington 100
1005 See No Sound, Hear Mo Sight 101
1006 Starstruck in Biloxi 102
1007 Stranger In Parrot Ice 101

(@) Identify the primary keys.
(b) Identify the foreign keys.

(c) Draw the entity relationship model.

104 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 6: Relational Language and Database Design

6. Write all full functional dependencies for the ER diagram below. The genus and species of
the plant determine the type of fruit, flower arrangement, leaf arrangement, and leaf

shape.

Leaf Arrangement

plant

@ Flower Arrangement

Answers: Self Assessment

1 (a) 2 (b)

3 tuple variable 4. DRC

5. database design 6 Rectangles

7 weak entity 8 Overlap constraints
9 Covering constraints 10. Aggregation

6.16 Further Readings

N

Books

Online links

C.J. Date, Introduction to Database Systems, Pearson Education.
Elmasri Navrate, Fundamentals of Database Systems, Pearson Education.
Martin Gruber, Understanding SQL, BPB Publication, New Delhi

Peter Rob & Carlos Coronel, Database Systems Design, Implementation and
Management, 7th Edition.

Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,
Tata McGraw Hill.

Silberschatz, Korth, Database System Concepts, 5th Edition, McGraw Hill.

SIlberschatz-Korth-Sudarshan, Database System Concepts, 4th Edition, Tata
McGraw Hill

Vai Occardi, Relational Database: Theory & Practice, BPB Publication, New Delhi

www.en.wikipedia.org
www.webopedia.com

www.web-source.net

LOVELY PROFESSIONAL UNIVERSITY

Notes

105

www.manaraa.com

Database Management Systems/Managing Database

Mandeep Kaur, Lovely Professional University

106

Notes

Unit 7: Relational Database Design

CONTENTS

Objectives

Introduction

7.1 Relational Database Design

7.2 Features of Relational Database

7.3 Atomic Domain and First Normal Form

7.4 Functional Dependencies

7.5 Multi-valued Dependencies

7.6 Join Dependencies

7.7 Rules about Functional Dependencies

7.8 Database Design Process
781 Logical Database Design
7.8.2 Entity Sets to Tables

7.9 Summary

7.10 Keywords

711 Self Assessment

7.12 Review Questions

713 Further Readings

Objectives

After studying this unit, you will be able to:

) Explain relational database design

o Describe various features of relational database

o Know atomic domain and first normal form

o Describe functional and multivalued dependencies
° Explain join dependencies

° Describe database design process
Introduction

Relational database supports basic database operations in order to provide useful means for
retrieving or manipulating data in tables. Because the relational model has its mathematical
basis upon the relational theory (by thinking tables as sets or relations), the supported database
operators conform to existing operators in relational algebra. In fact, a relational database
software implementation, called DBMS, is said to have higher degree of relational completeness
depending upon the extent to which relational algebra operators are supported.

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 7: Relational Database Design

7.1 Relational Database Design

The relational model was proposed by E. F. Codd in 1970. It deals with database management
from an abstract point of view. The model provides specifications of an abstract database
management system. To use the database management systems based on the relational model
however, users do not need to master the theoretical foundations.

Codd defined the model as consisting of the following three components:
1. Data Structure: a collection of data structure types for building the database.

2. Data Manipulation: a collection of operators that may be used to retrieve, derive or
modify data stored in the data structures.

3. Data Integrity: a collection of rules that implicitly or explicitly define a consistent database
state or changes of states.

7.2 Features of Relational Database

A good database design has the following features:
1. Faithfulness: The design and implementation should be faithful to the requirements.
(@) The use of constraints helps to achieve this feature.

2. Awoid Redundancy: Something is redundant if when hidden from view, you could still
figure it out from other data. This value is important because redundancy.

(@) Wastes space and
(b) Leads to inconsistency.

3. Simplicity: Simplicity requires that the design and implementation avoid introducing
more elements than are absolutely necessary - Keep it Simple (KIS).

(@) Thisvaluerequires designers to avoid introducing unnecessary intermediate concepts.

4. Right kind of element: Attributes are easier to implement but entity sets and relationships
are necessary to ensure that the right kind of element is introduced.

7.3 Atomic Domain and First Normal Form

Please see section 7.10 in detail

2

Task DBMS vs. RDBMS.

7.4 Functional Dependencies

When a single constraint is established between two sets of attributes from the database it is
called functional dependency. We consider a single universal relation scheme “A”. A functional
dependency denoted by XY, between two sets of attributes X and Y that are subset of universal
relation “A” specifies a constraint on the possible tuples that can form a relation state of “A”. The
constraint is that, for any two tuples t, and t, in “A” that have t,(X) = t, (X), we must also have
t,(Y) = t,(Y). It means that, if tuple t, and t, have same values for attributes X then X — Y to hold
t, and t, must have same values for attributes Y.

LOVELY PROFESSIONAL UNIVERSITY

Notes

107

www.manaraa.com

Database Management Systems/Managing Database

Notes Thus, FD X — Y means that the values of the Y component of a tuple in “A” depend on or is
determined by the values of X component. In other words, the value of Y component is uniquely
determined by the value of X component. This is functional dependency from X to Y (but not Y
to X) that is, Y is functionally dependent on X.

The relation schema “A” determines the function dependency of Y on X (X — Y) when and only
when:

1. If two tuples in “A”, agree on their X value then
2. They must agree on their Y value.
Please note that if X — Y in “A”, does not mean Y — X in “A”.

This semantic property of functional dependency explains how the attributes in “A” are related
to one another. A FD in “A” must be used to specify constraints on its attributes that must hold
at all times.

Example: A FD state, city, place — pin-code should hold for any address in India. It is
also possible that certain functional dependencies may cease to exist in the real world if the
relationship changes, for example, the FD pin-code— area-code used to exist as a relationship
between postal codes and telephone number codes in India, with the proliferation of mobile
telephone, the FD is no longer true.

Consider a relation
STUDENT-COURSE (enrolno, sname, cname, classlocation, hours)

We know that the following functional dependencies (we identify these primarily from
constraints, there is no thumb rule to do so otherwise) should hold:

1. enrolno — sname (the enrolment number of a student uniquely determines the student
names alternatively, we can say that sname is functionally determined/dependent on
enrolment number).

2. classcode — cname, classlocation (the value of a class code uniquely determines the class
name and class location.

3. enrolno, classcode — Hours (a combination of enrolment number and class code values
uniquely determines the number of hours and students study in the class per week (Hours).

These FDs can be optimised to obtain a minimal set of FDs called the canonical cover. However,
these topics are beyond the scope of this course and can be studied by consulting further reading
list.

Normalisation

The first concept of normalisation was proposed by Mr. Codd in 1972. Initially, he alone proposed
three normal forms named first, second and third normal form. Later on, with the joint efforts of
Boyce and Codd, a stronger definition of 3NF called Boyce-Codd Normal Form (BCNF) was
proposed. All the said normal forms are based on the functional dependencies among the
attributes of a relation. The normalisation process depends on the assumptions that:

1. A set of functional dependencies is given for each relation, and
2. Each relation has a designated primary key.

The normalisation process is based on the two assumptions /information above. Codd takes a
relation schema through a series of tests to ascertain whether it satisfies a certain normal form.

108 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 7: Relational Database Design

The process proceeds in a top-down fashion by evaluating each relation against the criteria for
normal forms and decomposing relations as found necessary during analysis.

Therefore, normalisation is looked upon as a process of analysing the given relation schemas
based on their condition (FDs and Primary Keys) to achieve the desirable properties:

1. Firstly, Minimizing redundancy, and

2. Secondly, Minimizing the insertion, deletion update anomalies.

Thus, the normalisation provides the database designer with:

1. A formal framework for analysing relation schemas.

2. A series of normal form tests that can be normalised to any desired degree.

The degree of normal forms to which a relation schema has been normalised through
decomposition confirm the existence of additional properties that the relational schemas should
possess. It could include any or both of two properties.

1. The lossless join and non-additive join property, and
2. The dependency preservation property.

Based on performance reasons, relations may be left in a lower normalisation status. It is not
mandatory that the database designer must normalise to the highest possible normal form. The
process of storing the join of higher normal form relations, as a base relation (which is in a lower
normal form) is known as denormalisation).

7.5 Multi-valued Dependencies

In database modeling using the E-R Modeling technique, we usually face known difficulties that
may arise when an entity has multivalued attributes. In the relational model, if all of the
information about such entity is to be represented in one relation, it will be necessary to repeat
all the information other than the multivalue attribute value to represent all the information. It
will result in multi-tuples about the same instance of the entity in the relation and the relation
having a composite key (the entity id and the mutlivalued attribute). This situation becomes
much worse if an entity has more than one multivalued attributes and these values are represented
in one relation by a number of tuples for each entity instance such that every value of one of the
multivalued attributes appears with every value of the second multivalued attribute to maintain
consistency. The multivalued dependency relates to this problem when more than one
multivalued attributes exist. Let us consider the same through an example relation that represents
an entity ‘employee’.
emp (e#, dept, salary, job)

We have so far considered normalisation based on functional dependencies that apply only to
single-valued facts. For example, e# — dept implies only one dept value for each value of e#.
Not all information in a database is single-valued, for example, job in an employee relation may

be the list of all projects that the employee is currently working on. Although e# determines the
list of all the projects that an employee is working on, yet, e# — job is not a functional dependency.

The fourth and fifth normal forms deal with multivalued dependencies. Before discussing the
4NF and 5NF we will discuss the following example to illustrate the concept of multivalued
dependency.

programmer (emp_name, projects, languages)

LOVELY PROFESSIONAL UNIVERSITY

Notes

109

www.manaraa.com

Database Management Systems/Managing Database

Notes The above relation includes two multivalued attributes of the entity programmer -projects and
languages. There are no functional dependencies.

The attributes projects and languages are assumed to be independent of each other. If we were to
consider projects and languages as separate entities, we would have two relationships (one
between employees and projects and the other between employees and programming languages).
Both the above relationships are many-to-many relation, in the following sense:

1. One programmer could have several projects.

2. May know several programming languages, also

3. One project may be obtained by several programmers, and

4. One programming language may be known to many programmers.

The above relation is in 3NF (even in BCNF) with some disadvantages. Suppose a programmer
has several projects (Proj_A, Proj_B, Proj_C, etc.) and is proficient in several programming
languages, how should this information be represented? There are several possibilities.

emp_name Projects languages
DEV Proj_A C
DEV Proj_A JAVA
DEV Proj_A C++
DEV Proj_B C
DEV Proj_B JAVA
DEV Proj_B C++
emp_name Projects languages
DEV Proj_A NULL
DEV Proj_B NULL
DEV NULL C
DEV NULL JAVA
DEV NULL C++
emp_name Projects languages
DEV Proj_A C
DEV Proj_B JAVA
DEV NULL C++

Other variations are possible. Please note this is so as there is no relationship between the
attributes ‘projects’ and programming ‘languages’. All the said variations have some
disadvantages. If the information is repeated, we face the problems of repeated information and
anomalies as we did when second or third normal form conditions were violated. Without
repetition, difficulties still exist with insertions, deletions and update operations. For example,
in the first table we want to insert a new person RAM who has just joined the organisation and
is proficient in C and JAVA. However, this information cannot be inserted in the first table as
RAM has not been allotted to work on any project. Thus, there is an insertion anomaly in the first
table. Similarly, if both Project A and Project B get completed on which DEV was working (so we
delete all the tuples in the first table) then the information that DEV is proficient in C, JAVA, and
C++ languages will also be lost. This is the deletion anomaly. Finally, please note that the
information that DEV is working on Project A is being repeated at least three times. Also the
information that DEV is proficient in JAVA is repeated. Thus, there is redundancy of information
in the first tables that may lead to inconsistency on updating (update anomaly).

110 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 7: Relational Database Design

In the second and third tables above, the role of NULL values is confusing. Also the candidate
key in the above relations is (emp name, projects, language) and existential integrity requires
that no NULLs be specified. These problems may be overcome by decomposing a relation as
follows:

emp_name Projects
DEV Proj_A
DEV Proj_B
emp_name languages
DEV C
DEV JAVA
DEV C++

This decomposition is the concept of 4NF. Functional dependency A — B relates one value of A
to one value of B while multivalued dependency A — — B defines a relationship where a set of
values of attribute B are determined by a single value of A. Multivalued dependencies were
developed to provide a basis for decomposition of relations like the one above. Let us define the
multivalued dependency formally.

2

Task Normalization is a key concept of DBMS. Suggest.

Multivalued dependency: The multivalued dependency X — — Y is said to hold for a relation
R(X, Y, Z) if, for a given set of value (set of values if X is more than one attribute) for attribute X,
there is a set of (zero or more) associated values for the set of attributes Y and the Y values
depend only on X values and have no dependence on the set of attributes Z.

|

Notes Whenever X — — Y holds, so does X — — Z since the role of the attributes Y and Z
is symmetrical.

In the example given above, if there was some dependence between the attributes projects and
language, for example, the language was related to the projects (perhaps the projects are prepared
in a particular language), then the relation would not have MVD and could not be decomposed
into two relations as above. However, assuming there is no dependence, emp_name — —
projects and emp_name — — languages holds.

Trival MVD: A MVC X —»—Y is called trivial MVD if either Y is a subset of X or X and Y together
form the relation R.

The MVD is trivial since it results in no constraints being placed on the relation. If a relation like
emp(eno, edpendent#) has a relationship between eno and edependent# in which eno uniquely
determines the values of edependent#, the dependence of edependent# on eno is called a trivial
MVD since the relation emp cannot be decomposed any further.

Therefore, a relation having non-trivial MVDs must have at least three attributes; two of them
multivalued and not dependent on each other. Non-trivial MVDs result in the relation having
some constraints on it since all possible combinations of the multivalued attributes are then
required to be in the relation.

Let us now define the concept of MVD in a different way. Consider the relation R(X, Y, Z) having
a multi-valued set of attributes Y associated with a value of X. Assume that the attributes Y and

LOVELY PROFESSIONAL UNIVERSITY

Notes

111

www.manaraa.com

Database Management Systems/Managing Database

Notes Z are independent, and Z is also multi-valued. Now, more formally, X—— Y is said to hold for
R(X,Y, Z) if t, and t, are two tuples in R that have the same values for attributes X (t,[X] = t,[X])
then R also contains tuples t, and t, (not necessarily distinct) such that:

£[X] = £[X] = £,[X] = t,[X]
£[Y] = t [Y] and t[Z] = t,[Z]
t[Y] = t[Y] and t[Z] = t [Z]

In other words if t, and t, are given by:

t,=[X,Y,, Z], and
t,=[X, Y, Z)]

then there must be tuples t, and t, such that:

t,=[X,Y,, Z)], and
t,=[X Y, Z]

We are, therefore, insisting that every value of Y appears with every value of Z to keep the
relation instances consistent. In other words, the above conditions insist that Y and Z are
determined by X alone and there is no relationship between Y and Z since Y and Z appear in
every possible pair and hence these pairings present no information and are of no significance.
Only if some of these pairings were not present, there would be some significance in the pairings.

|

Notes 1f 7 is single-valued and functionally dependent on X then Z, = Z,. If Z is multivalue
dependent on X then Z <> Z,.

The theory of multivalued dependencies is very similar to that for functional dependencies.
Given D a set of MVDs, we may find D*, the closure of D using a set of axioms. We do not discuss
the axioms here. You may refer this topic in further readings.

We have considered an example of Programmer(Emp name, projects, languages) and discussed
the problems that may arise if the relation is not normalised further. We also saw how the
relation could be decomposed into P1(emp name, projects) and P2(emp name, languages) to
overcome these problems. The decomposed relations are in fourth normal form (4NF), which
we shall now define.

We now define 4NF. A relation R is in 4NF if, whenever a multivalued dependency X —— Y
holds, then either

1. The dependency is trivial
2. Xis a candidate key for R.

The dependency X—— o or X -— Y in a relation R (X, Y) is trivial, since they must hold for all
R (X, Y). Similarly, in a trivial MVD (X, Y) »— Z must hold for all relations R (X, Y, Z) with only
three attributes.

If a relation has more than one multivalued attribute, we should decompose it into fourth
normal form using the following rules of decomposition:

For a relation R(X,Y,Z), if it contains two nontrivial MVDs X——Y and X——Z then decompose
the relation into R, (X,Y) and R, (X,Z) or more specifically, if there holds a non-trivial MVD in a
relation R (X,Y,Z) of the form X —-—Y, such that X) n Y = ¢, that is the set of attributes X and Y
are disjoint, then R must be decomposed to R, (X,Y) and R, (X,Z), where Z represents all attributes
other than those in X and Y.

112 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 7: Relational Database Design

Intuitively R is in 4NF if all dependencies are a result of keys. When multivalued dependencies
exist, a relation should not contain two or more independent multivalued attributes. The
decomposition of a relation to achieve 4NF would normally result in not only reduction of
redundancies but also avoidance of anomalies.

7.6 Join Dependencies

Based on the discussion above, we know that the normal forms require that the given relation R
if not in the given normal form should be decomposed in two relations to meet the requirements
of the normal form. However, in some rare cases, a relation can have problems like redundant
information and update anomalies, yet it cannot be decomposed in two relations without loss of
information. In such cases, it may be possible to decompose the relation in three or more
relations using the 5NF. But when does such a situation arise? Such cases normally happen when
a relation has at least three attributes such that all those values are totally independent of each
other.

The fifth normal form deals with join-dependencies, which is a generalisation of the MVD. The
aim of fifth normal form is to have relations that cannot be decomposed further. A relation in
5NF cannot be constructed from several smaller relations.

A relation R satisfies join dependency *(R,, R,, ..., R) if and only if R is equal to the join of R, R,,
.., R where R are subsets of the set of attributes of R.

A relation R is in 5NF if for all join dependencies at least one of the following holds:
1. (R, R, ..., R) is a trivial join-dependency (that is, one of R, is R)
2. Every R is a candidate key for R.

An example of 5NF can be provided by the same above example that deals with emp_name,
Projects and Programming languages with some modifications:

emp_name Projects Languages
DEV Proj_A C
RAM Proj_A JAVA
DEV Proj_B C
RAM Proj_B C++

The relation above assumes that any employee can work on any project and knows any of the
three languages. The relation also says that any employee can work on projects Proj_A, Proj_B,
Proj_C and may be using a different programming languages in their projects. No employee
takes all the projects and no project uses all the programming languages and therefore all three
fields are needed to represent the information. Thus, all the three attributes are independent of
each other.

The relation above does not have any FDs and MVDs since the attributes emp_name, project and
languages are independent; they are related to each other only by the pairings that have
significant information in them. For example, DEV is working on Project A using C languague.
Thus, the key to the relation is (emp_name, project, languague). The relation is in 4NF, but still
suffers from the insertion, deletion, and update anomalies as discussed for the previous form of
this relation. However, the relation therefore cannot be decomposed in two relations.

(emp_name, project), and

(emp_name, language)

LOVELY PROFESSIONAL UNIVERSITY

Notes

113

www.manaraa.com

Database Management Systems/Managing Database

Notes Why?

Let us explain this with the help of a definition of join dependency. The decomposition mentioned
above will create tables as given below:

Emp_project

emp_name Projects
DEV Proj_A
RAM Proj_A
DEV Proj_B
RAM Proj_B
Emp_language
Emp_name languages
DEV C
RAM JAVA
RAM C++

On taking join of these relations on emp_name it will produce the following result:

emp_name Projects Languages
DEV Proj_A C
RAM Proj_A JAVA
RAM Proj_A CH++
DEV Proj_B C
RAM Proj_B JAVA
RAM Proj_B CH++

Since the joined table does not match the actual table, we can say that it is a lossy decomposition.
Thus, the expected join dependency expression:

*((emp_name, project), (emp_name, language)) does not satisfy the conditions of lossless
decomposition. Hence, the decomposed tables are losing some important information.

Can the relation ‘Programmer’ be decomposed in the following three relations?
(emp_name, project),

(emp_name, language) and

(Projects, language)

Please verify whether this decomposition in lossless or not. The join dependency in this case
would be:

*((emp_name, project), (emp_name, language), (project, language))

and it can be shown that this decomposition is lossless.

Project-Join Normal Form

PJNF is defined using the concept of the join dependencies. A relation schema R having a set F of

functional, multivalued, and join dependencies, is in PJNF (5 NF), if for all the join dependencies
in the closure of F (referred to as F+) that are of the form

*R,R,...R),

114 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 7: Relational Database Design

1. *R, R, ... R) is a trivial join dependency.
2. Every R is a superkey for R.
PJNF is also referred to as the Fifth Normal Form (5NF).

Let us first define the concept of PJNF from the viewpoint of the decomposition and then refine
it later to a standard form.
Definition 1: A JD *[R,, R
relation r(R).

» - - -, R] over a relation R is trivial if it is satisfied by every

The trivial JDs over R are JDs of the form *[R, R, ..., R] where for some i the R, = R.
Definition 2: AJD *[R, R, ..., R] applies to a relation scheme Rif R=R, R, ...R .

Definition 3: Let R be a relation scheme having F as the set of FDs and JDs over R. R will be in
project-join normal form (PJNF) if for every JD *[R, R, . . ., R] which can be derived by F that
applies to R, the following holds:

1. The JD is trivial
2. Every R, is a super key for R.

For a database scheme to be in project-join normal form, every relation R in this database
scheme should be in project-join normal form with respect to F.

Let us explain the above with the help of an example.

Example: Consider a relational scheme R = A B C D E G having the set of dependencies
F={*ABCD,CDE,BDG],*[AB,BCD,AD],A-BCDE,BC— AG}. TheRas given above
is not in PJNF. Why? The two alternate keys to R are A and BC, so please note that the JD *[A B
CD, CDE, BD G], does not satisfy the condition “Every R, is a super key for R” as the two
components of this JD viz.,, CD E and B D G, does not satisfy the condition.

However, if we decompose the Ras {R, R, R.}, whereR, =ABCD,R,=CDE,andR,=BDG,
then it is in PJNF with respect to F. Please note that in the example, the JD *[A B, BCD, A D] is
implied by F and applies to R,. Whereas, the FDs are trivial or have keys as the left side.

The definition of PINF as given above is a weaker than the original definition of PJNF given by
Fagin. The original definition ensures enforceability of dependencies by satisfying keys, in
addition to elimination of redundancy. The final definition is:

Definition 4: Let R be a relation scheme having F as the set of FDs and JDs over R. R will be in
project-join normal form (PJNF) if for every JD *[R, R,, .. ., R] which can be derived by F that
applies to R, is implied by the key FDs of R.

The following example demonstrates this definition.

Example: Consider a relation scheme R = A B C having the set of dependencies as
F={A— BC, C— AB, *[A B, B C]}. Please note that the R is not in PJNF, although since A B and
B C are the super keys of R, R satisfies the earlier definition of PJNF. But R does not satisfy the
revised definition as given above.

—]]

Notes Since every multivalued dependency is also a join dependency, every PJNF schema
is also in 4NF. Decomposing a relation scheme using the JDs that cause PJNF violations
creates the PJNF scheme. PJNF may also be not dependency preserving.

LOVELY PROFESSIONAL UNIVERSITY

Notes

115

www.manaraa.com

Database Management Systems/Managing Database

Notes E

Task Create join dependencies.

7.7 Rules about Functional Dependencies

Functional dependencies (FD) are type of constraint that is based on keys. A superkey is defined
as in the relational schema R, where:

a subset K of R is a subkey of R if, in any legal relation 7(R), for all pairs, ¢, and ¢, in tuple r such
that ¢, is not equal to ¢, then ¢, [K]is not equal to ¢,[K].

Or, no two rows (tuples) have the same value in the attribute(s) K, which is the key. Now, if there
are two attributes (or sets of attributes) A and B that are legal in the relation schema R, we can
have a functional dependency where

A implies B

for all pairs of tuples such that t,[A]is equal to t,[A] andt,[B]is equal to ¢,[B]. This allows us to
state that K is a superkey of R if K implies R. For example, in a relation that has names and social
security numbers, whenever your Social Security number is the student ID, the name in that
tuple can only contain your name. That is because your name is not unique, but your Social
Security is. If I go to the Social Security Administration and search their database for the name
“Gary Burt”, the results is a large number of people. If I search of the social security number
“123-45-6789”, the result is one and only one person.

Another example is in the loan information that we looked at before:
Loan-info-schema = (branch-name, loan-name, customer-name, amount)

it can be shown that the loan-number implies both the amount and the branch-name.It does not
imply the customer-name because there may be more than one person listed on the load, such as
a husband and wife, or parent and child (when the parent co-signs the loan).

Functional dependencies:
1. Specify a set of constraints on a legal relation.
2. Test relations to see if they are legal.

Some relations are said to be trivial when they are satisfied by all relations:

7.8 Database Design Process

The database design process can be divided into six steps. The E-R model is most relevant to the
first three steps.

1. Requirements Analysis: The very first step in designing a database application is to
understand what data is to be stored in the database, what applications must be built on
top of it and what operations are most frequent and subject to performance requirements.
In other words, we must find out what the users want from the database.

2. Conceptual Database Design: The information gathered in the requirements analysis step
is used to develop a high-level description of the data to be stored in the database, along
with the constraints that are known to hold over this data. This step is often carried out
using the E-R model or a similar high-level data model.

116 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 7: Relational Database Design

3. Logical Database Design: We must choose a DBMS to implement our database design and
convert the conceptual database design into a database schema in the data model of the
chosen DBMS. Task here is to convert E-R schema into relational database schema.

4. Schema Refinement: The fourth step in database design is to analyze the collection of
relations in our relational database schema to identify potential problems and to refine it.

5. Physical Database Design: In this step we must consider typical expected workloads that
our database must support and further refine the database design to ensure that it meets
desired performance criteria. This step may simply involve building indexes on some
tables and clustering some tables, or it may involve a substantial redesign of parts of the
database schema obtained from the earlier design steps.

6. Security Design: In this step, we identify different user groups and different roles played
by various users (e.g., the development team for a product, the customer support
representatives, and the product manager). For each role and user group, we must identify
the parts of the database that they must be able to access and the parts of the database that
they should not be allowed to access and take steps to ensure that they can access only the
necessary parts.

2

Task Uses of Superkey in DBMS.

7.8.1 Logical Database Design

During logical design we transform the E-R diagrams that were developed during conceptual
design into relational database schemas.

Transforming E-R diagrams to relations is a relatively straightforward process with a well-
defined set of rules. In fact, many CASE tools can automatically perform many of the conversion
steps. However, it is important that we understand the steps in this process for three reasons:

1. CASE tools often cannot model more complex data relationships such as ternary
relationships and supertype/subtype relationships. For these situations we may have to
perform the steps manually.

2. There are sometimes legitimate alternatives where we will need to choose a particular
solution.

3. We must be prepared to perform a quality check on the results obtained with a CASE tool.

The ER model is convenient for representing an initial, high-level database design. Given an ER
diagram describing a database, there is a standard approach to generating a relational database
schema that closely approximates the ER design. We now describe how to translate an ER
diagram into a collection of tables with associated constraints, i.e., a relational database schema.

7.8.2 Entity Sets to Tables

An entity set is mapped to a relation in a straightforward way: Each attribute of the entity set
becomes an attribute of the table.

=7

Notes Both the domain of each attribute and the (primary) key of an entity set.

LOVELY PROFESSIONAL UNIVERSITY

Notes

117

www.manaraa.com

Database Management Systems/Managing Database

Notes Consider the Employees entity set with attributes ssn, name, and lot shown in Figure 7.1.

Figure 7.1: The Employees Entity Set

Employees

A possible instance of the Employees entity set, containing three Employees entities, is shown
in Figure 7.2 in tabular format.

Figure 7.2: An Instance of the Employees Entity Set

ssn name lot
1 | Raju 10
2 Santosh 20
3 Brahma 30

The following SQL statement captures the preceding information, including the domain
constraints and key information:

CREATE TABLE Employees (ssn CHAR (11),
name CHAR (30),
lot INTEGER,
PRIMARY KEY (ssn))

Relationship Sets (without Constraints) to Tables: A relationship set, like an entity set, is
mapped to a relation in the relation model. To represent a relationship, we must be able to
identify each participating entity and give values to the descriptive attributes of the relationship.
Thus, the attributes of the relation include:

1. The primary key attributes of each participating entity set, as foreign key fields.
2. The descriptive attributes of the relationship set.

The set of non-descriptive attributes is a superkey for the relation. If there are no key constraints,
this set of attributes is a candidate key.

Consider the Works_In2 relationship set shown in Figure 7.3. Each department has offices in
several locations and we want to record the locations at which each employee works.

118 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 7: Relational Database Design

Figure 7.3: A Ternary Relationship Set

Employees | Departments

All the available information about the Works_In2 table is captured by the following SQL
definition:

CREATE TABLE Works_In2 (ssn CHAR(11),
did INTEGER,
address CHAR(20),
since DATE,

PRIMARY KEY(ssn, did, address),

FOREIGN KEY(ssn) REFERENCES employees,
FOREIGN KEY (address)REFERENCESLocations,
FOREIGN KEY(did) REFERENCES Departments)

The address, did, and ssn fields cannot take on null values. Because these fields are part of the
primary key for Works_In2, a NOT NULL constraint is implicit for each of these fields. These
constraint ensures that these fields uniquely identify a department, an employee, and a location
in each tuple of Works_In.

Translating Relationship Sets with Key Constrains: If a relationship set involves n entity sets
and some m of them are linked via arrows in the ER diagram, the key for any one of these m
entity sets constitutes a key for the relation to which the relationship set is mapped. Thus we
have m candidate keys, and one of these should be designated as the primary key.

Consider the relationship set Manages shown in Figure 7.4. The table corresponding to Manages
has the attributes ssn, did, since. However, because each department has at most one manager,
no two tuples can have the same did value but differ on the ssn value. A consequence of this
observation is that did is itself a key for Manages; indeed, the set did, ssn is not a key (because it
is not minimal). The Manages relation can be defined using the following SQL statement:

Figure 7.4: Key Constraint on Manages

1

Employees | Manages Departments

LOVELY PROFESSIONAL UNIVERSITY

Notes

119

www.manaraa.com

Database Management Systems/Managing Database

Notes CREATE TABLE Manages (ssn CHAR(11),
Did INTEGER,
since DATE,

PRIMARY KEY(did),
FOREIGN KEY(ssn) REFERENCES Employees,
FOREIGN KEY(did) REFERENCES Departments)

A second approach to translating a relationship set with key constraints is often superior because
it avoids creating a distinct table for the relationship set.

This approach eliminates the need for a separate Manages relation, and queries asking for a
department’s manager can be answered without combining information from two relations.
The only drawback to this approach is that space could be wasted if several departments have no
managers. In this case the added fields would have to be filled with null values. The first
translation (using a separate table for Manages) avoids this inefficiency, but some important
queries require us to combine information from two relations, which can be a slow operation.

The following SQL statement, defining a Dept. Mgr relation that captures the information in
both Departments and Manages, illustrates the second approach to translating relationship sets
with key constraints:

CREATE TABLE Dept_Mgr (did INTEGER
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY(did),
FOREIGN KEY(ssn)REFERENCES Employees)

T

Notes The ssn can take on null values.

Translating Relationship Sets with Participation Constraints: Consider the ER diagram in
Figure 7.5, which shows two relationship sets, Manages and Works. In Every department is
required to have a manager, due to the participation constraint, and at most one manager, due
to the key constraint.

CREATE TABLE Dept_Mgr(did INTEGER
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY(did),
FOREIGN KEY (ssn)REFERENCESEmployees,
ON DELETE NO ACTION)

Table constraints and assertions can be specified using the null power of the SQL query language
and are very expressive, but also very expensive to check and enforce.

'i Example: We cannot enforce the participation constraints on the Works_In relation

without using these general constraint.

To ensure total participation of Departments in Works_In, we have to guarantee that every did
value in Departments appears in a tuple of Works_In.

120 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 7: Relational Database Design

Figure 7.5: Manages and Works_In

1

Employees | Manages | Departments

TS
<

Translating Weak Entity Sets: A weak entity set always participates in a one-to-many binary
relationship and has a key constraint and total participation. The weak entity has only a partial
key. Also, when an owner entity is deleted, we want all owned weak entities to be deleted.

Consider the Dependents weak entity set shown in Figure 7.6, with partial key pname.
A Dependents entity can be identified uniquely only if we take the key of the owning Employees
entity and the pname of the Dependents entity and the Dependents entity must be deleted if the
owning Employees entity is deleted.

We can capture the desired semantics with the following definition of the Dep-Policy relation:

CREATE TABLE Dep_Policy (pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11),

PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,
ONDELETECASCADE)

Figure 7.6:The Dependents Weak Entity Set

Employees 1 @ Dependents

The primary key is pname, ssn, since Dependent is a weak entity.

Translating Class Hierarchies: We present the two basic approaches to handling ISA hierarchies
by applying them to the ER diagram.

LOVELY PROFESSIONAL UNIVERSITY

Notes

121

www.manaraa.com

Database Management Systems/Managing Database

Notes

Figure 7.7: Class Hierarchy

Employees

A
hourly wages

Hourly Emps Contract Emps

1. We can map each of the entity sets Employees, Hourly_Emps, and Contract_Emps to a
distinct relation. The relation for Hourly_Emps includes the hourly_wages and
hours_worked attributes of Hourly_Emps. It also contains the key attributes of the
superclass, which serve as the primary key for Hourly_Emps, as well as a foreign key
referencing the superclass (Employees). For each Hourly_Emps entity, the value of the
name and lot attributes are stored in the corresponding row of the superclass (Employees).

2. We can create just two relations, corresponding to Hourly_Emps and Contract_Emps. The
relation for Hourly_Emps includes all the attributes of Hourly_Emps as well as all the
attributes of Employees (i.e., ssn, name, lot, hourly_wages, hours_worked).

The first approach is general and is always applicable. Queries in which we want to examine all
employees and do not care about the attributes specific to the subclasses are handled easily
using the Employees relation.

The second approach is not applicable if we have employees who are neither hourly employees
nor contract employees, since there is no ways to store such employees. Also, if an employee is
both an Hourly_Emps and a Contract_Emps entity, then the name and lot values are stored twice.
This duplication can lead to some of the anomalies.

Translating ER Diagrams with Aggregation: Translating aggregation into the relational model
is easy because there is not real distinction between entities and relationships in the relational
model.

Consider the ER diagram shown in Figure 7.8. The Employees, Project, and Departments entity
sets and the Sponsors relationship set are mapped as described in previous sections. For the
Monitors relationship set, we create a relation with the following attributes: the key attributes
of Employees (ssn), the key attributes of Sponsors (did, pid), and the descriptive attributes of
Monitors (until).

122 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 7: Relational Database Design

Notes

Figure 7.8: Aggregation

Consider the Sponsors relation. It has attributes pid, did, and since, and in general we need it (in
addition to Monitors) for two reasons:

1. We have to record the descriptive attributes (in our example, since) of the Sponsors
relationship.

2. Not every sponsorship has a monitor, and thus some pid, did pairs in the Sponsors relation
may not appear in the Monitors relation.

However, if Sponsors has no descriptive attributes and has total participation in Monitors,
every possible instance of the Sponsors relation can be obtained by looking at the pid, didcolumns
of the Monitors relation. Thus, we need not store the Sponsors relation in this case.

2

Task How many foreign key available on single table?

Case Smudy — Data Warehousing: A Strategic Tool

atawarehouse is a massive independent business database system that is populated
with data that has been extracted from a range of sources. The data is held
separately from its origin and is used to help to improve the decision-making
process.
Many traditional Databases are involved in recording day to day operational activities of

the business, called online transaction processing (OLTP)., commonly implemented in
Airline Bookings & Banking Systems, for fasters response and better control over data.

Contd...

LOVELY PROFESSIONAL UNIVERSITY 123

www.manaraa.com

Database Management Systems/Managing Database

Notes After establishment of OLTP Systems, reports and summaries can be drawn for giving

inputs to decision-making process and this process is called online analytical processing
(OLAP).

For better customer relationships management strategy, the call centres and
datawarehouses must be fully integrated. Datawarehouse works as a strategic tool for
decision-support which requires lot of time for establishment, and needs to be updated
with operational information on daily weekly or monthly basis.

Datawarehouse is used for proactive strategies formulation in critical & complex situations.
A number of CRM vendors are advocating for single integrated customer database which
includes call centre, web sites, branches and direct mail, but it lacks in analytical functioning
of datawarehouse. This Database can't be expanded also, and carry decision support
operations on call centre Database becomes slow & the query processing and inquiries
handling operations also become slow & inefficient for agents dealing with customers.

Datawarehouse is must for identifying most profitable & loyal customers and those
customers can be offered better customized services which increases the chances of
additional profits.

Although call centre systems & datawarehouses are altogether different systems yet
dependant on each other to fully exploit their potential respectively.

Questions

1. Explain OLTP & OLAP processes with their respective advantages.

2 How the response time in performing OLAP queries can be improved?
3 Explain the importance of regular updation of data in a datawarehouse.
4. Explain the role of datawarehousing in the functioning of a call centre.
5

"Datawarehouse works as a strategic tool for decision support". Comment.

Source: Management Information System by Dharmenda and Sangeeta Gupta

7.9 Summary

° As database is a collection of tables and tables are collection of fields and fields are
collection of data items, so to design the database we have to follow certain rules on the
data or information.

° To design an efficient database we have to rake all measures in the beginning, so these
measures are taken according to rules.

7.10 Keywords

Foreign Key: A foreign key is an attribute that completes a relationship by identifying the parent
entity. Foreign keys provide a method for maintaining integrity in the data.

Functional Dependency: A functional dependency is a one-way relationship between two
attributes (or two sets of attributes) A and B in a relation R such that at any given point of time,
for each unique value of attribute A, only one value of attribute B is associated with it.

Normal Forms: Normalization is based on the concept of normal forms. A table is said to be in
a particular normal form if it satisfies a certain set of constraints defined for that normal form.

124 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 7: Relational Database Design

7.11 Self Assessment Notes

Fill in the blanks:
1. The relational model was proposed byc.cccccoeuvivininnn

2. When a single constraint is established between two sets of attributes from the database it
iscalledcocoovvirnniiiinnn

The first concept of normalisation was proposed by Mr. Codd inccccceuuuee.
............................ is defined using the concept of the join dependencies.

Functional dependencies (FD) are type of constraint that is based oncccccc....

The weak entity has only acccceuvvrennen. key.

The oo is convenient for representing an initial, high-level database design.

An entity set is mapped to a relation inacccecevvurnnen. way.

o ® N g kW

A always participates in a one-to-many binary relationship and has a key
constraint and total participation.

10. The .o is trivial since it results in no constraints being placed on the
relation.

7.12 Review Questions

Explain with examples the problems cause due to redundancy of data in tables or relations.
Define functional dependency. Give example.
Describe various features of relational database.

Describe with examples the techniques used for reducing the redundancy of data in tables.

S

Sketch with examples the differences between the Third Normal Form (3NF) and Boyce
Codd Normal Form.

Explain why a relation table is subjected to advanced normalizations?
Define Multivalued Dependencies. Give Examples. Explain how are they eliminated?

What do you mean by join dependencies?

o X N S

Consider the relation R (A, B, C, D, E) with functional dependencies
A—-BC

CD—-D

B—-D

E—-A

List the candidates key for R. Give a lossless dependency preserving decomposition of R.
into 3 NF and explain it briefly.

10. Describe the rules of functional dependencies.

LOVELY PROFESSIONAL UNIVERSITY 125

www.manaraa.com

Database Management Systems/Managing Database

Notes Answers: Self Assessment
1 E.F. Codd 2. functional dependency
3 1972 4. Project-Join Normal Form
5. keys 6. partial
7 ER model 8. straightforward
9 weak entity set 10. Multi Valued Dependencies
7.13 Further Readings
Books C.J. Date, Introduction to Database Systems, Pearson Education.

Elmasri Navrate, Fundamentals of Database Systems, Pearson Education.
Martin Gruber, Understanding SQL, BPB Publication, New Delhi

Peter Rob & Carlos Coronel, Database Systems Design, Implementation and
Management, 7th Edition.

Raghurama Krishnan, Johannes Gehrke, Database Management Systems, 3rd Edition,
Tata McGraw Hill.

Silberschatz, Korth, Database System Concepts, 5th Edition, McGraw Hill.

Sllberschatz-Korth-Sudarshan, Database System Concepts, 4th Edition, Tata
McGraw Hill

Vai Occardi, Relational Database: Theory & Practice, BPB Publication, New Delhi

AN
Y. 4,
Online links ~ www.en.wikipedia.org
www.webopedia.com

www.web-source.net

DVELY PROFESSIONAL UNIVERSITY

www.manharaa.com

Sahil Rampal, Lovely Professional University Unit 8: Normalization

Unit 8: Normalization Notes
CONTENTS
Objectives
Introduction
8.1 Normalization
8.2 First Normal Form
8.3 Second Normal Form
84 Third Normal Form
8.5 Boyce Codd Normal Form
8.6 Fourth Normal Form
8.7 Fifth Normal Form
8.8 Summary
8.9 Keywords

8.10 Self Assessment
8.11 Review Questions

8.12 Further Readings

Objectives

After studying this unit, you will be able to:

° Define normalization

° Describe first, second, third normal forms
° Knowing Boyce Codd normal form

° Explain fourth and fifth normal forms
Introduction

Normalization is the step-by-step decomposition of complex records into simple records. Through
normalization a collection of a data in a record structure is replaced by successive record structures
that are simpler and more manageable. Normalization is carried out mainly for four reasons:

1.

2
3.
4

To structure the data so that any pertinent relationship between entities can be represented.
To permit easy retrieval of data in response to query a report requests.
To simplify the maintenance of the data through updates, insertions and deletions.

To reduce the need to restructure or reorganize data when new application requirements
arise.

LOVELY PROFESSIONAL UNIVERSITY 127

www.manaraa.com

Database Management Systems/Managing Database

Notes 8.1 Normalization

Normalization is typically a refinement process after identifying the entities, identifying their
relationships, and defining the tables required in the database and the columns within each
table. The starting point for the normalization process can be visualized as the universal relation.
This relation contains all the attributes of interest, and is structured so that each tuple in the
relation has single-valued element. Normalization results in the formation of tables that satisfy
certain specified constraints and represent certain normal forms. Normal forms are table
structures with minimum redundancy.

E.F. Codd defined the first, second and third normal forms. A revised version of third normal
form is given by Boyce and Codd, which is known as Boyce-Codd normal form. Fagin defined
the fifth normal form.

The process of splitting a relation to reduce the probability that anomalies will occur is known
as decomposition. The key to going about decomposition is logical and methodical way.
Normalization reduces redundancy-using principle of non-loss decomposition, which is the
reduction of a table to smaller tables without any loss of information.

Normalization is the process of refining the design of relational tables to minimize data
redundancy. Normalization consists of a series of rules that should be employed to make sure
that the table is fully normalized by listing the functional dependencies and decomposing it into
smaller, efficient tables. Normalization eliminates data maintenance anomalies, minimizes
redundancy, and eliminates data inconsistency.

Figure 8.1

Unnor ables

| =
=
®
T
(5

€(

a

Normal Forms
Normalization is based on the concept of normal forms. A table is said to be in a particular
normal form if it satisfies a certain set of constraints defined for that normal form.

These constraints usually apply to the attributes of the table and on the relationships among
them.

There are multiple levels of normal forms, each addresses a specific factor that could result in
reducing data maintenance anomalies.

128 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 8: Normalization

The various normal forms are: Notes
First Normal Form

Second Normal Form

Third Normal Form

Boyce-Codd Normal Form

Fourth Normal Form

AU

Fifth Normal Form

Figure 8.2

8.2 First Normal Form

The First Normal Form states that:

There should be no repeating groups in a column. In other words, columns in the table should
have atomic values.

]

Notes Atomic

A column is said to be atomic if the values are indivisible units.

A relation R is said to be in the first normal form (1NF) if and only if every attribute contains
atomic values only.

The table contains atomic values if there is one and only one data item for any given row and
column intersection. Non-atomic values result in repeating groups. A repeating group is the
reoccurrence of a data item or group of data items within records.

LOVELY PROFESSIONAL UNIVERSITY 129

www.manaraa.com

Database Management Systems/Managing Database

Notes %
' Example:

Consider an Employee table with an attribute Dependents as shown

below:
ID Name DeptNo Sal Mgr Dependents
131 Ram 20 10000 134 Father, Mother, Sister
132 Kiran 20 7000 136 Wife, Son
133 Rajesh 20 5000 136 Wife
134 Padma 10 20000 Son, Daughter
135 Devi 30 3000 137 Father, Mother
136 Satish 20 6000 Father, Mother
137 V.V. Rao 30 10000 Wife, First Son, Second Son

Here, the dependents column has non-atomic values. To make the relation in INF, we have to

convert the non-atomic values into atomic values as follows:

ID Name DeptNo Sal Mgr Dependents
131 Ram 20 10000 134 Father
131 Ram 20 10000 134 Mother
131 Ram 20 10000 134 Sister
132 Kiran 20 7000 136 Wife
132 Kiran 20 7000 136 Son
133 Rajesh 20 5000 136 Wife
134 Padma 10 20000 Son
134 Padma 10 20000 Daughter
135 Devi 30 3000 137 Father
135 Defi 30 3000 137 Mother
136 Satish 20 6000 Father
137 V.V.Rao 30 10000 Wife
137 V.V.Rao 30 10000 First Son
137 V.V.Rao 30 10000 Second Son

The dependents column in the above table is having atomic values. Observe that for each
dependent the other employee details such as ID, Name, Dept No, Sal and Mgr are repeated and
will form as a repeating group. As per the definition of INF, the above relation is in INF.

However, it is best practice to remove the repeating groups in the table.

Repeating groups refers to any set of columns whose values are related and repeat in the table.
According to the rule of first normal form, the table should not have repeating groups of column

values.

130

LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 8: Normalization

If there are such groups in the table, the table should be decomposed and the associated columns
will form their own table while at the same time ensuring a link of this table with the original
table (from where it was decomposed). Thus, the Employee relation can be divided into two

relations namely Emp and Emp_Depend as follows:

Emp
ID Name DeptNo Sal Mgr
131 Ram 20 10000 134
132 Kiran 20 7000 136
133 Rajesh 20 5000 136
134 Padma 10 20000
135 Devi 30 3000 137
136 Satish 20 6000
137 V.V.Rao 30 10000
Emp_Depend
S. No. ID Dependents
1 131 Father
2 131 Mother
3 131 Sister
4 132 Wife
5 132 Son
6 133 Wife
7 134 Son
8 134 Daughter
9 135 Father
10 135 Mother
11 136 Father
12 137 Wife
13 137 First Son
14 137 Second Son
ig|
Notes The SNo column is added in the Emp_Depend table because according to relational
model, every table must have a unique identifier. In this table, ID cannot serve as a unique
identifier and hence introduced SNo as primary key.

After first normal form, this table is divided into two tables: Customer and Customer Tran.

LOVELY PROFESSIONAL UNIVERSITY

Notes

131

www.manaraa.com

Database Management Systems/Managing Database

Notes Table before First Normal Form Reports Table
Cust_ | Name | Address | Acc_ Acc_ Min_ | Tran_ Tran_ Tan_ | Amount | Balance
id id type bal id type mode
001 Ravi [Hyd 994 SB 1000 14300 B/F 1000 1000
001 Ravi [Hyd 994 SB 1000 14301 | Deposit Bycash |1000 2000
001 Ravi [Hyd 994 SB 1000 14302 | Withdrawal | ATM 500 1500
110 Tim |Sec'bad [340 CA 500 14303 B/F 3500 3500

110 Tim |[Sec 'bad |340 CA 500 14304 | Deposit Payroll | 3500 7000
110 Tim |Sec'bad 340 CA 500 14305 | Withdrawal | ATM 1000 6000

420 Kavi |Vizag 699 SB 1000 14306 B/F 6000 6000
420 Kavi |Vizag 699 SB 1000 14307 | Credit Bycash 2000 8000
420 Kavi |Vizag 699 SB 1000 14308 | Withdrawal | ATM 6500 1500

Tables after First Normal Form

Customer Table

Cust_id Name Address
001 Ravi Hyd
110 Tim Sec'bad
420 Kavi Vizag

Customer_Tran Table

Tran_id | Cust_id | Acc_id | Acc_type |Min_bal |Tran_type |[Tan_mode | Amount |Balance
14300 001 994 SB 1000 B/F 1000 1000
14301 001 994 SB 1000 | Deposit Bycash 1000 2000
14302 001 994 SB 1000 | Withdrawal ATM 500 1500
14303 110 340 CA 500 B/F 3500 3500
14304 110 340 CA 500 | Deposit Payroll 3500 7000
14305 110 340 CA 500 | Withdrawal ATM 1000 6000
14306 420 699 SB 1000 B/F 6000 6000
14307 420 699 SB 1000 | Credit Bycash 2000 8000
14308 420 699 SB 1000 | Withdrawal ATM 6500 1500

Since Cust_id, Name and Address form a repeating group and hence the Reports table is
decomposed into Customer and Customer_Tran tables. (The primary key columns of each table
are indicated in bold in figures).

The requirements for a table to be INF is exactly what relational database theory specifies as
essential. That is, a table in a relational database must always be in INF.

8.3 Second Normal Form

A table in the first normal form may show redundancies due to partial dependencies. The
Second Normal Form resolves partial dependencies.

The Second Normal Form states that
1. The table should be in 1st Normal form

2. Every non-key column must be fully functional dependent on the Primary key

132 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 8: Normalization

|

Notes Partially Dependent

An attribute (column) is said to be partially dependent if its value can be determined by
any one or more attributes of the primary key, but not all.

Each normal form is built upon the previous normal form. The first statement states that the
prerequisite for second normal form is to have all its tables in first normal form.

The Fully Functional Dependency is for a given composite primary key (a primary key consisting
of more than one attribute), each column attribute, which is not an attribute of the Primary key,
should be dependent on each and every one of the primary key attributes.

If attributes dependent on only a part of the primary key attribute exist, they are removed and
placed in a separate table where the primary key of the new table is the portion of the original
key that they were dependent on.

A non-key attribute is fully functionally dependent on the primary key if it is functionally
dependent on all the attributes comprising the primary key.

A relation R is said to be in the second normal form (2NF) if and only if it is in INF and every
non-key attribute must be fully functional dependent on the Primary key.

The Customer Tran table is decomposed into three tables: Transaction, Customer Account and
Accounts.

Tables before Second Normal Form

Customer Table

Cust_id Name Address
001 Ravi Hyd
110 Tim Sec 'bad
420 Kavi Vizag

Customer_Tran Table

Tran_id | Cus_id | Acc_id [Acc_type | Min_bal | Tran_type | Tan_mode | Amount | Balance
14300 001 994|SB 1000 B/F 1000 1000
14301 001 994(SB 1000 | Deposit Bycash 1000 2000
14302 001 994(SB 1000| Withdrawal [ATM 500 1500
14303 110 340(CA 500 B/F 3500 3500
14304 110 340(CA 500|Deposit Payroll 3500 7000
14305 110 340|CA 500|Withdrawal |ATM 1000 6000
14306 420 699|SB 1000 B/F 6000 6000
14307 420 699|SB 1000]Credit Bycash 2000 8000
14308 420 699(SB 1000|Withdrawal [ATM 6500 1500

LOVELY PROFESSIONAL UNIVERSITY

Notes

133

www.manaraa.com

Database Management Systems/Managing Database

Notes Tables after Second Normal Form
Customer Table
CusMd Name Address
001 Ravi Hyd
110 Tim Sec' bad
420 Kavi Vizag
Customer_Accounts Table
Cust.id Acc_id Balance
001 994 1500
110 340 6000
420 699 1500
Accounts Table
Acc_id Accjype Min.bal
994 SB 1000
340 CA 500
699 SB 1000
Transaction Table
Tran_id Acc_id Tran_type Tan_mode Amount
14300 994 B/F 1000
14301 994 Deposit Bycash 1000
14302 994 Withdrawal |ATM 500
14303 340 B/F 3500
14304 340 Deposit Payroll 3500
14305 340 Withdrawal |ATM 1000
14306 699 B/F 6000
14307 699 Credit Bycash 2000
14308 699 Withdrawal [|ATM 6500

Acc_type and Min_bal columns of Customer_Account table are not fully functionally dependent
on the primary key (dependent on acc_id), a new Accounts table is formed. Similarly, the
Balance is dependent on Cust_id and Acc_id, but not fully functionally dependent on the primary
key, resulting in a new Customer_Accounts table.

2

Task

FNF vs. SNF (First Normal Form vs. Second Normal Form)

134 LOVELY PROFESSIONAL UNIVERSITY

www.manaraa.com

Unit 8: Normalization

8.4 Third Normal Form

A table the Second Normal form may show redundancies due to transitive dependencies.

The Third normal form resolves transitive dependencies. A transitive dependency arises when
a non-key column is functionally dependent on another non-key column that in turn is
functionally dependent on the primary key.

The Third Normal Form states that:
1. The table should be in 2nd Normal Form

2. The table should be devoid of transitive dependencies

]

Notes Transitive Dependencies

Columns dependent on other columns that in turn are dependent on the primary key are
said to be transitively dependent.

Foreign Key: A foreign key is an attribute that completes a relationship by identifying the parent
entity. Foreign keys provide a method for maintaining integrity in the data.

The first rule states that a prerequisite for Third normal form is that the table first satisfies the
rules of the second normal form and in turn the first normal form.

A relation R is said to be in the third normal form (3NF) if and only if it is in 2NF and every non-
key attribute must be non-transitively dependent on the Primary key.

3NF ensures that none of the non-key attributes are dependent upon another attribute which in
turn is dependent on the primary key. Table shows the tables before and after third normal
form. The Accounts table in the second normal form has a transitive dependency as follows:

Acc_id - Acc_type
Acc_type — Min_bal
This transitive dependency is resolved by decomposing the Accounts table into two tables:

Acc_Detail and Product.

Tables before Third Normal Form

Customer_Accounts Table

Cust_id Name Address
001 Ravi Hyd
110 Tim Sec 'bad
420 Kavi Vizag

Customer Table

Cust.id Acc_id Balance
001 994 1500
110 340 6000
420 699 1500

LOVELY PROFESSIONAL UNIVERSITY

Notes

135

www.manaraa.com

Database Management Systems/Managing Database

136

Notes

Accounts Table

Acc_id Acc_type Min.bal
994 SB 1000
340 CA 500
699 SB 1000
Transaction Table
Tran_.id Acc_id Tran_type Tan_mode Amount
14300 994 B/F 1000
14301 994 Deposit Bycash 1000
14302 994 Withdrawal ATM 500
14303 340 B/F 3500
14304 340 Deposit Payroll 3500
14305 340 Withdrawal ATM 1000
14306 699 B/F 6000
14307 699 Credit Bycash 2000
14308 699 Withdrawal ATM 6500
Tables after Third Normal Form
Custome